- Transients programs
 - Time Domain solvers
 - Electrical equations solved
 - Discretized
 - Power converter models
 - Outer control loop \((P, \omega, f)\)
 - Inner current loops (inner controls) \((VSC)\)
 - Synchronization
 - Switching behavior
 - Detailed
 - Simplified switch
 - Average models (neglects switch)
For wind, PV, storage etc → model the resource
-equivalent circuit models
Electromagnetic Transients

- Power systems normally in steady-state
 - Or slowly varying quasi-steady-state
 - Allows use of RMS phasors
- Switching, operations, faults, lightning,
 - Response frequencies from DC to MHz
 - Generally, dies out rapidly (higher freq.)
 - Large voltage and currents are possible
 - RLC response to change in voltage or current

Why Analyze Transients?

- Power systems operate in sinusoidal steady-state majority of time
- Sudden changes cause large voltage and currents
 - Including faults and response to clearing faults
- Protection decisions before transients die out
 - Or even based on transients
- Power converters produce repetitive transient behavior
UI Fundamental Principles of Transient Analysis

- The laws of circuit theory still apply
 » Kirchhoff's Laws (KCL, KVL)
 » Energy is conserved
 » You can't change current through an inductor instantaneously
 » You can't change voltage across a capacitor instantaneously
- Oversimplified models can give misleading results

UI Frequency or Frequencies of Interest

- Model detail depends on the frequencies associated with the transient
- Power converter model detail
 » Detailed device turn-on/turn-off
 » Versus ideal-switches
 » Versus non-switching models
- Simulation time step will also vary with classification in time domain simulation

Ton, Toff are the simulation timestep
Circuit Simulation Results

- Output often as time domain waveforms
- Often want instantaneous peak values of \(v(t) \) and \(i(t) \)
 - Or in some cases power or energy
 - Peaks missed with RMS or harmonic solutions

Simulation Tools: Transient Network Analyzer (TNA)

- Predates use of digital computers
 - Analog computer model
 - Hybrid: digital controls
- Real-time digital simulators
- Cost limits to small class of problems
 - Closed loop testing of control hardware
UI Off-Line Time Domain Simulation

- Digital computer simulation of transients
- General purpose equation solvers: MATLAB, MathCAD
- Analog electronic and integrated circuits: SPICE, Saber
- Not really designed for power system transients

ECE 529 Lecture 4

The Electromagnetic Transients Program-EMTP

- Hermann Dommel, Germany, then BPA
- Numerically solves difference equations
- Fixed versus variable time-step
- EMTP has become and industry standard (verified models)
- Modules in other power systems programs
- Matlab toolbox

ECE 529 Lecture 4

Transient Power Converter Simulation 9

Spring 2021
EMTP Variants

- Original version mainly modeled RLC elements, switches, ideal sources and lines
- Many extensions and several versions
 - ATP: Alternate transients program (http://www.emtp.org)
 - EMTP-RV (http://www.emtp.com)
 - EMTDC: student version available free from their web site (http://www.pscad.com/)
 - RTDS: Real time digital simulator
 - OPAL-RT: Real time digital simulator
 - Sim Power Systems block set for Matlab
UI Capabilities and Outputs of EMT Programs

- Outputs are voltage, current, power, and energy versus time
- Control variables are available if controls are modeled
- Can model simple controls using EMTPs control models or can interface to FORTRAN (in some cases C or Matlab too)
 » Programs have internal control modeling
 » Graphical user interface

ECE 529 Lecture 4

UI ECE 529

- This class will have assignments requiring use of an EMTP-like program
- Can use any of programs listed above, but best if use ATP, EMTP-RV, or PSCAD/EMTDC
 » EMTP-RV is available on campus and in UI VLAB
 - http://vlab.uidaho.edu/
 » Student version of PSCAD could be a little small at times
- If your employer has a preferred program you can use that – let me know

ECE 529 Lecture 4

Transient Power Converter Simulation 13
Spring 2021

https://pscad.com

emtp.org
Simple Switching Configurations Underlying Power Electronics

Three pole switch: EMTP-RV

[Diagrams of switching configurations with labels and symbols]