Impact of Fundament Rules of Power Electronics on Converter Topologies

- Design such that switch actions connect a voltage source (C) to a current source (L)
 » Sometime rotating machines substitute either
- Circuit design and control design to protect switches from overcurrent

Topologies

- Diode rectifiers
- Thyristor controlled rectifiers/inverters
 » Current source converters
- DC/DC converters
- Switched mode power supplies
- Voltage sourced converters
- Transformer coupled converters
- Thyristor controlled reactor or capacitor
Single Switch DC/DC Converters: Buck Converter (step down)

- One controlled switch

\[V_o = D \cdot V_d \]

Using average values

Inductor current

\[I_d = D \cdot I_o \]

Using average values

Switch and diode currents

\[I_d = D \cdot I_o \]

Using average values
Single Switch DC/DC Converters:

Boost Converter

- One controlled switch

\[V_o = \frac{V_d}{1-D} \]

Using average values

- Input current can be continuous
- Can combine with rectifier

Buck/Boost Converter

- One controlled switch

\[V_o = D \cdot \frac{V_d}{1-D} \]

Using average values
Half Bridge Converter

- Start from buck converter
- If split the left side with two capacitors can produce positive or negative output voltage
- Can use for DC-AC conversion

Basic Idea Behind VSC

- Goal is to synthesize ac voltage waveform from dc voltage source
- Current follows from voltage different across ac side R-L circuit
- Different avenues to improve quality of the voltage and current waveform
- Scaling to high power applications
- Different topologies as a result
Simple dc/dc Example

Simple dc/ac Example

Voltage Sourced Converters
Lecture 7
Spring 2023

- Carrier and voltage reference
- Switch and inductor currents
Simple dc/ac Example

AC voltage: converter terminal and external source voltages

Inductor current