ECE 529
Utility Applications of Power Electronics
Session 9
Power goes DC → AC → Inverter

Voltage Sourced Inverter (VSI)

motor drive

Induction motor

diode rectifie

Regeneration
US Style Diesel Electronic Locomotive

Diode rectifier

Wheels

4 or 6 total
- Converter - bidirectional power flow
- Rectifier - power AC-DC

VSC

CSC

modeling & analysis of VSC

→ Chapter 2 of Yazdani & Iravani
- Controlled switch model
 - carries current in either direction interrupts current at next time step

Component: SW_TACS

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSED</td>
<td>>0:5S closed</td>
<td>1</td>
</tr>
<tr>
<td>gilFU</td>
<td>>1:1 est diod</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Phase</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>1</td>
<td>VD</td>
</tr>
<tr>
<td>Io</td>
<td>1</td>
<td>VA</td>
</tr>
<tr>
<td>TACS</td>
<td>1</td>
<td>GATE</td>
</tr>
</tbody>
</table>

Component: DIODE

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vg</td>
<td>Volts</td>
<td>0.001</td>
</tr>
<tr>
<td>Ic</td>
<td>Amps</td>
<td>0.01</td>
</tr>
<tr>
<td>Tdeon</td>
<td>s</td>
<td>0</td>
</tr>
<tr>
<td>CLOSED</td>
<td>>0:5S closed</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Phase</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAT</td>
<td>1</td>
<td>VA</td>
</tr>
</tbody>
</table>

Output:
- 3 - Current&Voltage

NumPh 1
- PSCAD/EMTDC Implementation

[Diagram of an electrical circuit with labels and components]

[Graph showing waveforms labeled 'Isw' and 'Idiode']
Switch closed

\[V_{dc} > V_0 \]

\[\Delta i = \frac{(V_{dc} - V_0) \Delta t}{L} \]

\[\Delta V = L \frac{\Delta i}{\Delta t} \]

closed switch (model)

\[(0 - V_0) (1 - D) T_s \]

open switch (model)

volt-second balance
- EMTP-RV implementation

\[
2 \cdot \pi \cdot f \cdot t
\]
Option 2: Two controlled Switches: Bidirectional Power Flow Support

- Power Circuit
- Replace diode with controlled switch
- Controlled in opposition to top switch

- Modification to controls

Graph showing waveform with time in milliseconds and voltage values.
\[V_0 = D \frac{V_o}{V_{in}} \]
- EMTDC implementation

Interpolated switching control
EMTP-RV Implementation
Si closed - $V_{AB} = V_{AC} - \frac{\sqrt{2}}{2} V_{top}$

Si open - $V_{AB} = -\frac{V_{AC}}{2}$

V_{AB} (Si open)
Early inverters for PV

Fundamental component of voltage matters for power transfer

$T = \frac{1}{60\text{Hz}}$
Open-Loop DC/AC Half Bridge Converter

Power Circuit

- Now have grounded midpoint on DC link
- Both switches need to be bidirectional

Gate Controls

- Updated son
Create sinusoidal \(m(t) \) function \(\rightarrow \) modulation function

\[w^t \]

\[\cos \]

\[\Sigma \]

\(V_{m_{pu}} \)

\[M \]
(file HalfBridgeDCAC.p14; x-var t) V:TRIA I:MM

AC voltage

V(t) is scaled version of V(t) (fundamental component)