HVDC Control

Control Principles

- Two independent control inputs at each terminal
 - Firing angle \rightarrow fast
 - AC voltage \rightarrow slow (LTC)
- Synchronized firing with PLL
- Fast control loop for firing commands
- Somewhat slower for regulator
Control Principles

• One terminal controls DC voltage (fast)
• One terminal controls DC current (slower)
 • Current order from higher order power command
• Communication enhances performance
• Required for start up or major changes
 • Power flow reversal

Static Characteristics

• Alpha min for rectifier
 • Disturbance
• Gamma min at inverter
 • Commutation failure
• VDCOL
Measurements

- DC voltage and current
- AC voltage
- Remote end current or voltage
- Operator commands

Station Control

- Bipole power order
- Frequency control/limits
- AC voltage control
- Reactive power
Bipole Control

- Pole power orders
- Power limits
- Pole balancing

Pole Control

- Pole power
- Firing angles, limits
- Phase limits
- Static characteristics
- Tap changer
- SSR damping
- Power Swing damping
- Pole protection
Power Control

- Operator sets power demand
- Compare to measured control
- Set current or voltage order
 - Within limits
- Can integrate offset to power order with frequency slope characteristic
- Can add power modulation control
- SSR damping

DC Faults with LCC

- DC faults
 - One end will not feed the fault
 - Use converter control to reverse voltage polarity
 - Reverses current direction
 - Starves Fault
 - Smoothing reactor slows rate of rise of current
- AC faults
 - Load rejection
 - Commutation failure
Multiterminal HVDC Systems

- Multiterminal Connection Options
- Controls
- Mixing LCC and VSC
 - Full bridge MMC
 - DC/DC converters