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This article describes a model of motion planning instantiated for grasping. According to the model, one
of the most important aspects of motion planning is establishing a constraint hierarchy—a set of
prioritized requirements defining the task to be performed. For grasping, constraints include avoiding
collisions with to-be-grasped objects and minimizing movement-related effort. These and other con-
straints are combined with instance retrieval (recall of stored postures) and instance generation (gener-
ation of new postures and movements to them) to simulate flexible prehension. Dynamic deadline setting
is used to regulate termination of instance generation, and performance of more than one movement at
a time with a single effector is used to permit obstacle avoidance. Old and new data are accounted for
with the model.

To reach and grasp objects effectively, one must be able to
perform actions intelligently. One must be able to reach any point
in the work space from any other point with different speeds; one
must be able to avoid collisions; one must be able to shape the
hand around the object so subsequent manipulations can take
place; and if necessary, one must be able to compensate for
changes in joint mobility due to accident, disease, or other imped-
iments. The importance of these abilities has been recognized by
others (e.g., Hebb, 1949; Lashley, 1942; Raibert, 1977; Wright,
1990), but one of them—the capacity for collision avoidance—has
received less attention than we think it deserves. A central point of
this article is that obstacle avoidance holds an important key to
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understanding typical features of human prehension and, by ex-
tension, other forms of adaptive movement. The computational
solution we have found for the obstacle-avoidance problem may
hold interest for researchers in motor control as well as others
because the mechanisms we have identified may have general
utility across a range of memory retrieval and problem-solving
contexts.

The article is organized as follows. In the first major section we
review previous theories of motion planning. In the second major
section we present a new model and describe its claims. In the third
major section we show how this new model applies to grasping in
particular. Here we explain how the model accounts for the main
findings of previous grasping studies, and we present a new
behavioral study involving complex reach-and-grasp motions
whose detailed kinematic properties, both of the hand and of the
joints, can be accounted for with the model. The final major
section concerns the limitations of the model, remaining issues,
and implications of our work for motor control and other domains.

Previous Models

Several theories have been developed to account for the abilities
mentioned at the start of this article. Those that we consider all
concern computational and algorithmic rather than implementa-
tion (neural) levels of explanation (Marr, 1982). Furthermore, the
theories we review are mainly concerned with the redundancy
problem in motor planning—that is, with the question of how
particular movements are realized when an infinite number of
movements allow a task to be achieved. Having a plethora of
movement options is more the norm than the exception in every-
day life. In the case of reaching for a point in space, for example,
any point within an obstacle-free region of reachable space can
usually be reached with an infinite number of final postures, and
each of these final postures can usually be arrived at with an
infinite number of movements. Thus, the emergence of a particular
movement to a particular final posture implicitly represents a
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solution to the problem of finding a unique solution when infi-
nitely many suffice.

The principal means of addressing the redundancy problem has
been to suppose that the planning system adds implicit require-
ments to explicit task requirements. Thus, if the task is to bring the
fingertip to a target (an explicit requirement), the planning system
may. for example, also require the performed movement to mini-
mize the mean rate of muscle tension change (Dornay, Uno,
Kawato, & Suzuki, 1996). The idea that implicit requirements help
solve the redundancy problem was recognized long ago in optimal
control theory (Bryson & Ho, 1975) and was introduced to the
study of motor control by Nelson (1983).

Flash and Hogan's (1985) Minimum Jerk Model

The implicit constraint hypothesis was popularized in motor
control by Flash and Hogan (1985), who suggested that aiming
movements might obey a "minimum jerk" principle. Here, plotting
the speed of the hand as a function of time, one finds that the
resulting speed, or "tangential velocity," profile is symmetric and
bell-shaped with the ratio of the peak velocity to the mean velocity
being about 1.87; see Hogan and Flash (1987) for a review. A
function of this form minimizes mean squared jerk (the mean third
time derivative of position) over the duration of the movement.

The tangential velocity function that Flash and Hogan (1985)
considered was defined with respect to extrinsic spatial coordi-
nates. A prediction of the minimum jerk principle so defined is that
hand paths in extrinsic space should be straight. Curved hand paths
can be generated, of course, but according to the minimum jerk
model, they must be produced by concatenating straight-line seg-
ments (Abend, Bizzi, & Morasso, 1982).

Initial evidence for the minimum jerk principle was encourag-
ing. Many speed profiles for manual pointing movements were
found to be bell-shaped, and many hand paths were found to be
straight (Morasso, 1981). Exceptions were also found, however.
Departures from symmetry in tangential velocity profiles were
observed (see Bullock & Grossberg, 1988, for a review), and
directionally dependent departures from hand path linearity were
also detected (Atkeson & Hollerbach, 1985; Haggard & Richard-
son, 1996; Thiel, Meulenbroek, & Hulstijn, 1998; Uno, Kawato, &
Suzuki, 1989). One way of reconciling these findings with the
minimum jerk principle is to suggest that departures from linearity
might be due to visual misperception (Wolpert, Ghahramani, &
Jordan, 1994), but doubt has been cast on this hypothesis (Osu,
Uno, Koike, & Kawato. 1997).

Uno, Kawato, and Suzuki's (1989) Minimum
Torque Change Model

Another way to explain the effect of movement direction on
hand path curvature as well as departures from symmetry in
tangential velocity profiles is to allow that movements satisfy a
different cost than the one proposed by Flash and Hogan (1985).
Uno et al. (1989) hypothesized that movements may satisfy a
minimum torque change constraint. They confirmed predictions of
this hypothesis in several experiments in which participants moved
the hand from place to place on a horizontal surface. Uno et al.
(1989) observed directionally dependent changes in hand curva-
ture and asymmetries in tangential velocity profiles consistent with

their predictions. They also found further model-consistent
changes in performance when movements were resisted by a
spring or when movements were made through explicitly desig-
nated intermediate or "via" locations. The number of local minima
in the tangential velocity profiles changed with the convexity or
concavity of the hand path as predicted by the model.

The model of Uno et al. (1989) shifted the focus from optimi-
zation with respect to extrinsic coordinates to optimization with
respect to intrinsic coordinates. Subsequent discussions of the Uno
et al. (1989) model by Kawato (1996a, 1996b) allowed for simul-
taneous optimization at different levels of control—at the hand
path level (where the minimum jerk constraint was assumed) and
at the muscle level (where a minimum muscle tension change
constraint was assumed as a means of realizing minimum torque
change). Kawato (1996a, 1996b) also suggested that the motor
system might in addition minimize changes in motor commands.
This view implies that there is optimization at the neural and
psychological levels as well as at the spatial and muscle levels. The
idea that movements satisfy constraints at several levels was an
important advance.

The Uno-Kawato (Uno et al., 1989; Kawato, 1996a, 1996b)
model had some weaknesses, however. One was that it had no
mechanism for changing costs within levels. Such changes are
important to allow performance to vary as a function of the task
being performed. For example, when a violinist intentionally
switches from legato (smooth) to staccato (jerky) bowing, he or
she switches from a mode that minimizes torque changes to one
that does not. A model of motor control must account for such
flexibility.

Another limitation of the Uno-Kawato (Uno et al., 1989; Ka-
wato, 1996a, 1996b) model is that it does not provide a clear
means of selecting final postures. This issue was sidestepped in the
studies done to test the model because participants moved only the
shoulder and elbow to bring the hand to a target location while the
wrist was braced. In this arrangement, only one arm posture was
associated with each table position. Generally, however, more
degrees of freedom exist in the joints than in the geometric
description of the location to be reached by the hand within the
work space, in which case infinitely many postures allow the
location to be reached. The Uno-Kawato model could not say
which final posture should be adopted when such redundancy
exists. Neither, for that matter, could the model of Flash and
Hogan (1985).

A third limitation of the Uno-Kawato (Uno et al., 1989; Ka-
wato, 1996a, 1996b) model was that it, like the Flash-Hogan
(1985) model, was mute on the question of how movement times
were specified. In both models, movement durations were supplied
externally and the models predicted trajectories based on those
prescribed times. Everyday actions, however, do not generally
have their durations specified externally.

A fourth limitation of the Uno-Kawato (Uno et al., 1989;
Kawato, 1996a, 1996b) model was that it did not deal with the
problem of obstacle avoidance. Although it provided a means of
moving through via locations when such locations were desig-
nated, it did not offer a means of indicating how via locations
could be found by the actor, as when circuitous movements must
be generated to bring the hand from under a table to the tabletop.
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Mel's (1990, 1991) Search Model

A model that explicitly addressed the obstacle-avoidance prob-
lem was developed by Mel (1990, 1991). He worked with a robot
equipped with an arm that moved on a horizontal surface. The
robot had a camera that provided an image of the work surface,
including the arm. During the robot's "babbling" phase, its arm
moved randomly to a large number of configurations, allowing
associations to be formed between the visual image of the arm in
each configuration and the corresponding joint angles. Later, when
the goal was to move the arm to designated targets without hitting
obstacles, the robot could do so by first moving the arm "mentally"
through a series of tiny submovements generated randomly around
each current arm configuration. Each configuration that was
reached at the end of each mental submove was evaluated for its
ability to bring the arm closer to the target and for its ability to
avoid collisions. If both of these criteria were met, the arm was
mentally advanced to the newly generated configuration and ran-
dom submovements were then initiated around the new configu-
ration. If none of the random moves from a current configuration
was judged successful, a new submovement from the previous
configuration was tried. This "backtracking" process continued all
the way back to the beginning of the main movement path if
necessary. Ultimately, if a successful movement path was found, it
was performed. Otherwise, the robot indicated that the task could
not be carried out.

An aim of Mel's (1990, 1991) modeling effort was to avoid
endowing the robot with explicit trigonometric equations for pre-
dicting limb spatial positions from vectors of joint angles. Instead,
Mel sought to have his robot learn to make visually guided arm
movements in the way Piaget (1954) argued babies do—by dis-
covering the visual consequences of their own motor acts through
trial and error. Mel had his robot recall arm spatial positions given
previously adopted joint-angle configurations. This enabled the
robot to anticipate the spatial consequences of adopting those
joint-angle configurations given the current spatial task. A similar
approach was used by Kuperstein (1988).

Mel's (1990, 1991) method had two limitations, however. One
was that the memorial backtracking demands of the planning
process were onerous and arguably as unnatural as reliance on
trigonometric functions. Second, the generated movements were
unrealistic. The robot's arm moved jerkily from one position to the
next. Mel (1990) acknowledged the latter problem but did not
attempt to generate kinematically realistic movement profiles.
Conceivably, one could try to smooth the series of submovements
generated by a process such as Mel's (1990, 1991) to yield a less
jerky composite movement, but this would still rely on the back-
tracking heuristic. It is also unclear whether movement smoothing
could be relied on to avoid collisions.

Rosenbaum et al. 's (1995) Knowledge Model

Whereas the Flash-Hogan (1985) and Uno et al. (1989) models
focused on properties of movements to already prescribed final
positions in already prescribed times, a model of Rosenbaum,
Loukopoulos, Meulenbroek, Vaughan, and Engelbrecht (1995;
Rosenbaum, Loukopoulos, Engelbrecht, Meulenbroek, &
Vaughan, 1996; Rosenbaum, Meulenbroek, & Vaughan, 1996)
focused on the means by which final postures and movement times

are chosen. Rosenbaum et al.'s (1995) model—called the knowl-
edge model to emphasize the cognitive substrates of motion plan-
ning—relied on differential cost emphasis (as in the example of the
violinist electing to make legato or staccato bow strokes). The
principal aim of Rosenbaum et al.'s (1995) model was to simulate
reaching movements in as lifelike a way as possible. The only
kinds of movements simulated with the model were sagittal-plane
and horizontal-plane pointing movements. Grasping and obstacle
avoidance were not addressed.

The main task that Rosenbaum et al. (1995) concentrated on was
reaching in the sagittal plane to bring any designated point along
the limb-segment chain—a contact point—to any designated lo-
cation in the work space. The model was rendered as a computer-
animated stick figure capable of bending at the hip, shoulder, and
elbow. The model made four claims about motion planning. The
first was that goal postures are selected by making use of stored
postures. The second claim was that goal postures are planned
prior to movements. The third claim was that it is possible to
weight costs differently depending on the task to be performed.
The fourth claim was that it is possible to specify movement
durations endogenously.

Because these ideas are preserved in the model presented here,
it is useful to elaborate on them, especially the most distinctive
claims that goal postures are selected by making use of stored
postures and that movements are generated on the fly. These
notions have at least five sources of justification.

1. Because optimal movements can be generated once initial
and final postures are known, as assumed in the Flash-Hogan
(1985) and Uno-Kawato (Uno et al., 1989; Kawato, 1996a, 1996b)
models, knowing final as well as initial postures can allow for
creation of optimal movements.

2. Memory for final positions is better than memory for move-
ments (see Jaric, Corcos, Gottlieb, Ilic, & Latash, 1994, and
Smyth, 1984, for reviews). This outcome suggests that final posi-
tions are represented at a different level than movements. Recent
work indicates that memory for final positions includes memory
for final postures, not just memory for final locations (Baud-Bovy
& Viviani, 1998; Rosenbaum, Meulenbroek, & Vaughan, 1999).

3. Variability of end positions is generally smaller than vari-
ability of movements to those end positions (Desmurget, Prablanc,
Rossetti, & Arzi, 1995; Wiesendanger, Kazennikov, Perrig, &
Kaluzny, 1996). This outcome is consistent with the view that end
positions are not simply the results of movements but instead are
goals that movements serve to satisfy. A recent article (Harris &
Wolpert, 1998) showed that minimization of end-position variabil-
ity can account for three of the most important known properties of
motor performance: (a) Movements tend to have smooth, roughly
symmetrical velocity profiles over a wide range of viscosity and
inertia; (b) speed and accuracy of aiming movements tend to trade
off in ways captured by Pitts' law (see Meyer, Smith, Kornblum,
Abrams, & Wright, 1990, for a review); and (c) the tangential
velocity of hand movements decreases as the curvature of the hand
path increases (Lacquaniti, Terzuolo, & Viviani, 1983). The fact
that these important movement regularities can be ascribed to end
point consistency highlights the functional primacy of end point
planning.

4. The end-state comfort effect, defined as willingness to adopt
initially uncomfortable postures for the sake of comfortable final
postures (Rosenbaum et al., 1990), is better predicted by ratings of
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final-posture comfort than by ratings of movement ease (Rosen-
baum, Vaughan, Jorgensen, Barnes, & Stewart, 1993).

5. Considerable evidence exists for the equilibrium point (EP)
hypothesis of motor control (see Latash, 1993, for a review). This
hypothesis states that the nervous system creates neuromuscular
equilibrium positions, which, if different from current equilibrium
positions, result in movement. In principle, detailed properties of
movements need not be specified when EPs are created. The EP
hypothesis is controversial. Questions about it are whether end
positions can be reached without sensory feedback, as assumed in
one version of the EP hypothesis (Bizzi, Hogan, Mussa-Ivaldi, &
Giszter, 1992; Polit & Bizzi, 1978), and whether ongoing move-
ment trajectories can be modified through learning—for example,
based on exposure to unusual force fields (Dizio & Lackner, 1995;
Gomi & Kawato. 1996; Gottlieb, 1998; Lackner & Dizio, 1994). In
our view, the ability to control movements on-line does not vitiate
the EP hypothesis because if actors can modify ongoing move-
ments, this does not mean that goal postures were not established
in advance. If one drives around a tree that has fallen on the road,
this does not imply that one lacked a planned destination.

Detailed Assumptions of Rosenbaum et al.'s (1995) Model

More detailed features of the model of Rosenbaum et al. (1995)
are now reviewed because many of them (Equations 1-6 and
11-13) are preserved in the model presented here. Readers wishing
to skip the technical details that follow should still be able to
understand the subsequent sections.

Suppose an actor is in some initial posture and he or she has
decided to reach to a location in the sagittal plane with a specific
contact point (typically, the hand). According to the model of
Rosenbaum et al. (1995), stored postures (i.e., remembered arrays
of joint angles) are weighted according to two task-relevant costs:
(a) a spatial error cost and (b) a travel cost. The spatial error cost,
Sr, for any posture p is defined as

~+~(y^~~yJ*-, (1)

where x and v denote the horizontal and vertical coordinates of the
spatial target, u, and of the contact point, v. The values of xv and
v,, are derived through forward kinematics,

Xj = A ; , - , + /,--, cos ^ 9,

+ - I Sil1

(2)

where the Cartesian location (x/, y;) of joint j is determined by
computing the horizontal and vertical distances between succes-
sive joint locations, from joint j = 1 (the toe) anatomically "up-
ward" from the toe to the fingertip to joint j — 1, using the length,
/ , - . _ , , of the limb segment anatomically closer to the toe than the jth
joint. As in traditional robotics (Craig, 1986), the joint angle
between limb segments i and i + 1 is defined as the counterclock-
wise rotation of segment / + 1 with respect to the linear extension
of segment /. It is assumed that the Cartesian location of the first
joint is known.

The travel cost. V , for posture p is defined as

(3)

where ay denotes the absolute angular displacement of they'th joint
from its current starting angle to its angle in posture p, and 7}
denotes the movement time for that absolute angular displacement.

It was assumed by Rosenbaum et al. (1995) that there is an
optimal time, T*(UJ), for absolute angular displacement a;.,

r*( a,) = (4)

where k/ is a nonnegative real number corresponding to the "ex-
pense factor" for joint /

The travel cost, Vj(ajt 7}), for the jth joint to cover absolute
angular displacement a, in a time T;, which can but need not equal
r*(a,.), is

(5)

where r denotes the unit of absolute angular displacement (in this
case, 1°) and 5 denotes the unit of time (in this case, 1 ms).
Equation 5 says the travel cost for a joint's angular displacement
grows as the square of the difference between the joint's required
and optimal movement time, weighted by the product of the joint's
expense factor and angular displacement that must be produced.

In the model of Rosenbaum et al. (1995) and in the model to be
presented here, simulations were restricted to the case of all joints
starting and ending their movements together. The way an optimal
common time, Tp, was found for all the joints moving to posture p
was to find the value of Tp that minimizes Vp. Setting dVp/dTp = 0,
the value of Tp that minimizes Vp,

I kj

(6)

is based on the weighted average of the optimal movement times
for the joints to cover their respective angular displacements. The
weights used for the weighted average are, as in Equation 5, given
by the product of the joints' expense factors and their respective
angular displacements. Once Tp is found, it replaces Tj in Equa-
tion 3 for all joints j.

With the spatial error cost (Equation 1) and the travel cost
(Equation 3) for the pth stored posture identified, the two costs are
combined to yield a total cost, C , for that stored posture,

'MaxS
+ w. MaxV (7)

where MaxS is the largest spatial error cost and MaxV is the largest
travel cost of any stored posture for the current reaching task and
where vvv and wv denote weights given to the spatial error cost and
travel cost, respectively. Because tvs and wv sum to 1, only one of
the values has to be specified explicitly.

Once the total cost is obtained for all the stored postures, a
single target posture is found by treating each of the p = 1 , 2 , . . . ,
m stored postures as vectors and taking their weighted sum
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where the weight, gp, of the pth stored posture,

G(C.)

2 G(C,)
/ > = ]

(8)

(9)

is based on a Gaussian function,

<T^2TT
(10)

with /i = 0 and cr = minCC^). Entering the Gaussian functions into
Equation 9 ensures that the weights assigned to the stored postures
are inversely related to the stored postures' total costs and that
when a stored posture's total cost is zero, it receives a weight of 1.

All the preceding steps allow for identification of a goal posture.
After a goal posture is identified, the next step is to generate a
movement to it. If one were to assume that movements minimize
mean torque change (Uno et al., 1989), one could generate a
minimum torque-change trajectory from the starting posture to the
goal posture provided one knew the relevant physical parameters
of the limb segments. However, because the model of Rosenbaum
et al. (1995) was only concerned with kinematics and because the
model assumed joint-based control, all joints not already at their
goal angles were assumed to move to their goal angles with simple
bell-shaped angular velocity profiles based on a prototype func-
tion, u(r), relating angular velocity to instantaneous time / relative
to total T,

1

W« = o sin
3 2f
2 + y (11)

which, after integration to yield a function, NormA(t), relating
normalized amplitude to t,

NormA(t) =
Jo v(t)dt

372 ' (12)

was scaled for each joint according to its required angular dis-
placement,

Aj(t) = ajNormA(t). (13)

From Equations 11-13, it follows that A^f) equals 0 at t = 0 and
increases sigmoidally to o^ at time t = T. Because all moving joints
were assumed to obey this principle and to have common starting
and ending times, all angle-angle graphs were assumed to be
linear. Some observed angle-angle graphs are nonlinear, however,
and those departures from linearity have been claimed to be related
to dynamics (Flash & Hogan, 1985; Gottlieb, Song, Hong,
Almeida, & Corcos, 1996), so the linear angle-angle relations
assumed by Rosenbaum et al. (1995), along with the bell-shaped
angular velocity profiles, are only first approximations. Linear
angle-angle functions have also been assumed by Soechting, Bu-
neo, Herrmann, and Flanders (1995). They are perhaps more
reasonable for a purely kinematic model like the model of Rosen-
baum et al. (1995) than for a model that includes forces.

Another feature of the Rosenbaum et al. (1995) model was
related to the fact that taking a weighted average of stored postures
to yield a goal posture can yield a posture for which the spatial
position of the contact point falls outside the spatial region occu-
pied by the component postures; this is sometimes called the
convex hull problem (Craig, 1986). In the model of Rosenbaum et
al. (1995) a special process called feedforward correction was
developed to deal with this problem. After a candidate goal posture
was nominated and if its spatial error was found to be unaccept-
able, a virtual spatial target was created on the opposite side of the
original spatial target at half the distance between the target and
the contact point of the candidate goal posture. A new goal posture
was then derived that was supposed to reach this virtual spatial
target. If this new goal posture was able to bring the contact point
acceptably close to the actual spatial target, a movement to that
goal posture was performed. Otherwise, another virtual spatial
target was created, opposite the original spatial target and at half
the distance between the target and the last created contact point.
This procedure continued until the contact point homed in on the
target. The number of cycles needed to get the contact point within
the spatial target provided a basis for predicting planning times.

A final feature of the earlier model concerned learning. When-
ever the cumulative strength of a stored posture fell below a
threshold, it was removed from the posture store and a new
randomly chosen posture took its place. The cumulative strength of
a stored posture depended on the weight it received in successive
reaching tasks regardless of whether it was physically adopted.

Performance of the Rosenbaum et al. (1995) Model

The model of Rosenbaum et al. (1995) yielded simulated move-
ments with many properties of observed movements. Any spatial
location in the work space could be reached from any other spatial
location in the work space, and this was also the case for any
contact point along the limb segment chain, provided it was
geometrically possible to bring that contact point to the spatial
target. The reason why any contact point whatsoever could be
brought to the spatial target was that the spatial error cost could be
defined with respect to the particular point along the limb segment
chain that was chosen by the actor to be the contact point. The
model also permitted compensation for changes in joint mobility.
When a joint had a larger than normal expense factor, stored
postures that relied on large rotations of that joint were assigned
higher than normal total costs. Consequently, the goal posture that
was ultimately selected required smaller than normal rotations of
that joint. This was an important achievement of the model. No
other model that we are aware of permits immediate compensation
for changes in joint mobility as quickly or as easily (cf. Mussa-
Ivaldi, Morasso, & Zaccaria, 1988).

The model also predicted several outcomes, which are men-
tioned here only briefly: (a) effects of movement speed on final
postures (Fischer, Rosenbaum, & Vaughan, 1997; Meulenbroek,
Rosenbaum, Thomassen, & Schomaker, 1993); (b) effects of start-
ing positions on final postures (Fischer, Rosenbaum, & Vaughan,
1997; Soechting et al., 1995); (c) elliptical end point distributions
biased toward starting positions (Ghez, Gordon, Ghilardi, & Sain-
burg, 1990); (d) directional dependence of hand path curvature
(Atkeson & Hollerbach, 1985; Haggard & Richardson, 1996;
Thiel, Meulenbroek, & Hulstijn, 1998); (e) adverse effects of
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starting-position uncertainty on movement accuracy (Ghilardi,
Gordon, & Ghez, 1995; Prablanc, Echallier, Jeannerod, & Komilis,
1979; Savelsbergh & Whiting, 1988; Sittig, Denier van der Gon, &
Gielen, 1987; Smyth & Marriott, 1982); (f) increased efficiency of
movement (lower travel cost) with practice (Sparrow & Irizarry-
Lopez, 1987); and (g) motor "scotomas," or small regions within
the work space that are not reached during blind positioning (Ghez,
Gordon, Ghilardi, Christakos, & Cooper, 1990).

When the model was tested against actual behavior, it was found
to do a good job of predicting final postures adopted by human
participants (Fischer et al., 1997; Vaughan, Rosenbaum, Harp,
Loukopoulos, & Engelbrecht, 1998). A novel prediction of the
model—that participants should exhibit increased stereotypy in
goal postures adopted in successive reaches to the same target
("settling in")—was also confirmed (Fischer et al., 1997).

Limitations of the Rosenbaum et al. (1995) Model

Despite the success of the Rosenbaum et al. (1995) model, it had
some limitations. First, for the weighted summing scheme to work,
many stored postures were necessary. Second, for weights to be
assigned to stored postures, the spatial error weight and effort
weight had to sum to 1. This meant that the costs always had to be
traded, which meant in turn that there was no way to insist on
achievement of several goals simultaneously—for example, to
have both high spatial accuracy and high ease of movement. A
third limitation of the original model was that although feedfor-
ward correction ensured attainment of the spatial target, the pro-
cedure was ad hoc. Moreover, feedforward correction was the only
way to predict movement planning times. A fourth problem was
that it was difficult to use the model to generate reaches when the
planning system was not given explicit information about all the
spatial targets to be reached by all the relevant contact points.
Thus, although the planning system could plan reaches when it was
told the coordinates of each spatial target for each contact point, it
could not generate reaches when the goal was less explicit (e.g.,
"Grab the coffee cup."). Similarly, the system could not avoid
obstacles or engage in complex tasks such as reaching around one
object to grasp another. The principal aim of the model presented
here was to tackle these problems.

New Model

The new model preserves several of the assumptions of the
earlier model. As before, we assume that goal postures are spec-
ified before movements are generated; that forward kinematics
(Equations 1-2) is used to determine where contact points will be
in extrinsic space; that travel costs are estimated assuming char-
acteristic expense factors for the joints and, for convenience, that
there are common movement times for all joint displacements
(Equations 3-6); that movements follow bell-shaped angular ve-
locity profiles (Equations 11-13); and that postures can be learned.

The new assumptions are fourfold. First, instead of saying that
candidate postures are evaluated with respect to just two costs that
must be traded (the spatial error cost and the travel cost), we now
allow that candidate postures are evaluated with respect to a
prioritized list of requirements, or constraint hierarchy. In this
approach, it is most important that the goal posture satisfy the
highest level constraint, that it next satisfy the second highest level

constraint, and so on. The constraint hierarchy defines the task to
be performed. Candidate postures are "weeded out" based on how
well they satisfy constraints at successively lower levels. This
choice method, known as elimination by aspects (Tversky, 1972),
has proven to be an effective way of modeling flexible decision
making with multiple constraints (Janis & Mann, 1996). An ad-
vantage of this approach over the one used by Rosenbaum et al.
(1995) is that it allows for simultaneous satisfaction of many
constraints.

The second new assumption is that instead of identifying goal
postures by taking a weighted sum of stored postures (Equations
7-10), goal postures are found through a two-stage process of
identifying the stored posture that is most promising for the task to
be performed and then generating potentially better postures. In
both stages, postures are evaluated with respect to the constraint
hierarchy. The two-stage process of first finding a most promising
stored posture and then generating a possibly better posture pro-
vides a way of accounting for the benefit of learning via instance
retrieval on one hand and the capacity for behavioral novelty via
instance generation on the other (see Logan, 1988). With the
two-stage method, there is also no longer a need for feedforward
correction.

The third new assumption concerns the termination of goal-
posture planning. In the earlier model, the planning of goal pos-
tures stopped when a goal posture was found based on weighted
summing of stored postures. If the found goal posture did not
satisfy the spatial error requirement, feedforward correction was
used until a posture was found that brought the contact point
acceptably close to the spatial target. In the new model, because
feedforward correction is no longer required and because we use
the two-stage process outlined above, we need a way of deciding
when posture-identification processes should stop so all possible
postures are not always evaluated.

The stopping rule is as follows. Candidate postures are gener-
ated around the most promising stored posture until a deadline is
reached, at which time the best posture found up to that time (i.e.,
the one that satisfies the most constraints) is chosen as the goal
posture. If the best posture was found before the deadline, the
deadline is reduced for the next trial unless the deadline is already
at its minimum value of 0. If the best posture was found at the
deadline or if no acceptable posture was found, the deadline is
increased for the next trial. The rationale behind this dynamic
deadline setting procedure is that if the best posture was found
when planning had to stop, more planning might have yielded a
better goal posture, but if the best posture was found before
planning had to stop, more planning was done than necessary.
Note that the stopping rule applies to the process of generating new
postures around the most promising stored posture, not to the
process of evaluating stored postures. In our simulations, all stored
postures are evaluated no matter how many stored postures exist.

We call the planning processes outlined above—generating
postures around a most promising stored posture until time runs
out—diffusion 'til a deadline. We use the term diffusion because
the process of generating postures around a most promising stored
posture involves dispersion from a starting point, much as a lump
of sugar spreads out when it is dropped into a cup of coffee. To the
best of our knowledge, diffusion 'til a deadline is a newly proposed
search procedure. It treats stored instances as pointers for search.
The most promising pointer is task dependent.
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The fourth and final innovation in the new model arose out of
our efforts to solve the obstacle avoidance problem. This is a
difficult problem that has occupied roboticists (e.g., Haugsjaa,
Souccar, Connolly, & Grupen, 1998; Lozano-Perez, 1983) and
psychologists (e.g., Dean & Briiwer, 1994; Sabes & Jordan, 1997;
Saling, Alberts, Stelmach, & Bloedel, 1998; Schneider, Zernicke,
Schmidt, & Hart, 1989; Worringham, 1993) for many years. The
solution we have arrived at for this problem is surprisingly simple.
We allow more than one movement to be performed at a time even
with the same limb segment.

To get a feeling for how this method works, consider the act of
bringing the hand from under a table to the top of the table. A
direct movement is impossible, of course, so a detour is necessary.
The detour can be generated by allowing the hand to move in
toward the body and then back out again while the forearm moves
up. Said another way, while the arm makes its main upward
movement from the starting posture to the goal posture, it simul-
taneously moves from the starting posture to a via posture and then
back to the starting posture. This extra back-and-forth movement
adds no net displacement to the main movement but affects the
trajectory shape.

This new method is appealing for several reasons. First, the
method for specifying the extra back-and-forth movement relies on
identification of a via posture, just as the method for specifying
primary movements relies on identification of a goal posture.
Second, the method comports with other evidence for movement
superposition, some of which comes from studies where partici-
pants moved the hand to one target and then had to redirect the
hand as quickly as possible to another suddenly appearing target
(Flash & Henis, 1991; Henis & Flash, 1992). Subjects' hand
kinematics suggested that the movement to the first target was not
terminated when the movement to the second target began. In-
stead, the two movements were superposed. The idea that move-
ments can be added can be traced to Fourier's ideas about the
composition of continuous waves by the addition of sine waves
(see French, 1971). Within the field of motor control, the idea finds
expression in models of oscillator-driven movement that rely on
summation of underlying waves to create complex movement
trajectories (Denier van der Gon & Thuring, 1965; Feldman, 1980;
Hollerbach, 1981; Von Hoist, 1973).

The third attraction of our obstacle-avoidance method is that the
procedure for checking for collisions is posture based. Recall that
in the model the default trajectory from the starting posture to the
goal posture is a straight-line movement through joint space. Such
a movement can result in a collision. To check for possible
collisions, we test for spatial overlap between the simulated actor
and objects in the environment. We do this by using a subset of the
postures that would be adopted during the default movement.
Testing for spatial overlap between to-be-assumed postures and
objects in the world provides a way of solving the conceptual
problem of saying what an obstacle is. An obstacle, whether it is
an external object or a part of one's own body, can be defined as
one or more postures that would result in unwanted collision.
Identifying obstacles in any other way is difficult (Lozano-Perez,
1983). The fact that obstacles and nonobstacles can be defined
with reference to postures provides another reason to pursue a
posture-based approach to motion planning.

Our aim in the preceding discussion has been to give an over-
view of the main ideas of the new model. More details are given

in the next section. Reviews of previous work that alluded briefly
to some ideas in the new model have appeared in Rosenbaum,
Meulenbroek, Vaughan, and Jansen (1999); Rosenbaum, Meulen-
broek, Vaughan, and Elsinger (1999); and Rosenbaum, Vaughan,
Meulenbroek, and Jansen (1999).

Prehension

As mentioned earlier, the model of Rosenbaum et al. (1995) was
used to predict behavior in pointing tasks. Such tasks, whether they
involve individual pointing motions or cascaded series of pointing
motions, are relatively simple because the number of moved joints
tends to be small and the spatial requirements of the tasks are
generally explicit (i.e., a specified contact point is supposed to go
to a designated spatial region). Modeling behavior in prehension
(grasping) tasks is more challenging because these tasks usually
require coordination of many joints and their objectives tend to be
vague. For example, if the task is to "grab the cup," there are no
explicit instructions about which contact points should be aligned
with which cup locations. The vagueness of the task description
increases the modeling challenge.

Another reason why prehension is an attractive target for study
is that a great deal of work has been done on it, owing largely to
initial observations by Jeannerod (1981, 1984; for reviews, see
Jeannerod, 1988; MacKenzie & Iberall, 1994; Rouiller, Hepp-
Reymond, & Wiesendanger, 1999; Smeets & Brenner, 1999;
Wing, Haggard, & Flanagan, 1996; Zaal, 1995). Many studies of
prehension have focused on the task analyzed here—reaching for
a circular object in the horizontal plane. The wealth of kinematic
data for this task provides benchmarks against which our model
can be evaluated.

In the following subsections, we describe the procedures used to
simulate prehension. Then we show how our simulation results
compared with previously observed findings. The last part of this
section presents a new behavioral study that was designed to
confront our model with kinematic data. The data to be fit were
time-varying spatial position data for the fingertips as well as
time-varying joint position data for the shoulder and elbow. As
described below, the model did as well predicting the behavior of
individual participants as other participants did, although there
were versions of the model (i.e., some parameter combinations)
that caused it to predict individual participant data more poorly
than any other participant. These results indicate that the behav-
ioral data were not so variable that they allowed any model to fit
them nor that the model is so powerful it could never be rejected.

Modeling Prehension

The prehension task we modeled was grabbing an object with
the tips of the index finger and thumb (the so-called precision
grip). The joints whose motions we simulated were the right arm's
shoulder, elbow, wrist, two joints of the thumb, and three joints of
the index finger. The joint motions permitted movement of the
arm, hand, and fingers in the horizontal plane (see Figure 1).

Because in our model any task must be defined with a constraint
hierarchy, we first established a constraint hierarchy for the pre-
hension task. The constraint hierarchy is given below, with the
constraints listed in order of decreasing importance. Note that
constraints for the hand come before constraints for the arm.
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A. Starting posture and object B. Starting and stored postures C. Best instance retrieval

D. Instance generation E. Via-posture generation F. Execution

Figure I. Overview of the grasping model. A: Stick figure with nine movable joints and object to be grasped (closed
circle). B: Starting posture as in first panel plus seven stored postures. C: Best retrieved instance (most suitable stored
posture) for current task. D: New posture identified through instance generation. E: Via posture (posture near original
starting posture) that permits most effective collision-free movement. F: Execution (movement).

1. When the hand is in its goal position, it should not collide
with (spatially overlap) an obstacle or the object to be grasped.

2. When the hand is in its goal position, it should contact the
object to be grasped such that the distance between the index
finger and thumb equals the diameter of the object.

3. The travel costs incurred by the index finger and thumb
during their angular displacements from their starting angles
should be as small as possible for the movements considered.

4. When the arm is in its goal position, it should not collide with
(spatially overlap) an obstacle.

5. When the arm is in its goal position the distance of the wrist
from the center of the object should allow the hand to adopt the
shape necessitated by Constraints 1 and 2.

6. The travel costs incurred by the shoulder, elbow, and wrist
should be as small as possible for the movements considered.

7. The movement to the goal postures of the hand and arm
should avoid collisions.

Note that in the preceding list, Constraints 1-3 applied to the
fingers; Constraints 4-6 applied to the shoulder, elbow, and wrist;
and Constraint 7 applied to all the joints. Because the finger
constraints (1-3) were considered before the arm constraints (4-
6), the model identified a goal posture for the fingers before
identifying a goal posture for the arm. We found it easier to
simulate grasping this way than by considering entire hand-arm
postures throughout planning, although we do not wish to claim
that hand-posture planning must precede combined hand-arm pos-
ture planning. Evidence that hand postures are neurally represented
separately from arm postures has been reported (Rizzolatti, 1987;
Rizzolatti et al., 1988), evidence that hand postures are specified
before arm postures has also appeared (Klatzky, Fikes, & Pelle-
grino, 1995), and it has been inferred from kinematic and reaction
time data that hand as well as arm postures are mentally repre-
sented before prehension movements begin (Jeannerod & Biguer,

1982; Pellegrino, Klatzky, & McCloskey, 1989; Rosenbaum,
Vaughan, Barnes, & Jorgensen, 1992).

Figure 1 gives a graphical overview of the steps leading to
prehension performance in our model. As can be seen in Figure
1 A, the simulation used a stick figure with nine movable joints and
a circular target object. The parameters used in the simulation are
listed in Table 1.

Figure 1B illustrates the first step in searching for a goal posture.
In this case, the stick figure has eight stored postures. The number
of possible stored postures, m, can be as small as 1 (just the last
goal posture adopted) or as large as g", where g is the number of
subdivisions of a mechanical degree of freedom (a joint axis) and
n is the number of degrees of freedom. We call 1/g the grain of the
system. For convenience, we assign the same grain to all degrees
of freedom. The learning rule is that the last m goal postures are
stored. The stored postures are evaluated serially with respect to
the constraint hierarchy, but in principle all the stored postures can
be evaluated in parallel. For each stored posture, the constraints in
the constraint hierarchy are checked from top (most important) to
bottom (least important) in a self-terminating fashion. The more
constraints a stored posture satisfies, the better its judged suitabil-
ity for the task. Checks for collision are achieved with forward
kinematics. Travel costs are evaluated using Equations 3-6.

The outcome of the evaluation of stored postures is identifica-
tion of the most promising stored posture, an example of which is
shown in Figure 1C. Here we refer to the most suitable stored
posture as the result of "best instance retrieval" to emphasize that
this stage (and the preceding one) entail past-instance retrieval.
Note that the hand and arm postures are represented together as a
single posture even though they are planned sequentially in our
simulations.

The most suitable instance of past performance may not permit
task achievement, as is the case in Figure 1C. Figure ID shows our
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Table 1
Simulation Parameters

Joint

Shoulder
Elbow
Wrist to finger
Wrist to thumb
Metacarpophalangeal joint
Proximal joint of index finger
Distal joint of index finger
Proximal joint of thumb
Distal joint of thumb

Length of distal
limb segment (cm)

30
25
10
9
4
4
4
6
4

Minimum angle
(degrees)

-60
0

-60
15
0
0
0

-40
-45

Maximum angle Possible expense factors
(degrees) (arbitrary units)

110 0.5,
160 0.5,
60 0.5,
50
35
40
45
0
0

.0,

.0,

.0,

.0

.0

.0

.0

.0

.0

1.5
1.5
1.5

Note. Additional parameters were grain (.01); maximum number, m, of postures in memory (200); deadline (15 search cycles); and instructed movement
time (100).

solution to this problem. This figure shows the result of instance
generation. Here, postures are generated around the most suitable
stored posture and are evaluated with respect to the constraint
hierarchy in the same way that stored postures are. Posture gen-
eration works via diffusion 'til a deadline (see Figure 2). The
process starts at the point in posture space corresponding to the
most promising stored posture; points around it are visited in ever
widening shells until the deadline, d, is reached. The shells are
farther and farther from the most promising stored posture by a
distance, \/g, of each joint's range of motion. Every point that is
considered corresponds to a combination of joint angles defining a
possible posture, and each of these possible postures is evaluated
with respect to the constraint hierarchy. If a generated posture

Figure 2. Diffusion 'til a deadline. The most promising stored posture is
available in the first cycle (1). Numbers denote search cycles in which
other postures are evaluated. The search continues until a deadline is
reached. Here the deadline is four search cycles. The axes correspond to
degrees of freedom for two joints, J, and J2.

happens to be a stored posture, it is evaluated again. This ineffi-
ciency of computation is justified only by simplification of book-
keeping. When more points must be tested, planning time grows,
but this is not a significant problem because our simulations are
not time critical (i.e., they are used for basic research) and our
serial evaluation of postures within a search cycle reflects the fact
that we perform our simulations on a serial computer. In principle,
the evaluation of postures within a cycle could all occur in parallel.

Once the deadline is reached (i.e., once all the candidate pos-
tures in the dth shell have been evaluated), the best found posture
is defined as the goal posture. If there is a tie for best posture, the
tie is broken randomly. If the best posture was found in a search
cycle less than d (i.e., before the deadline), the deadline for the
next trial is reduced by 1, provided the deadline is not at 0. If the
best posture was found in the dlh search cycle (i.e., at the dead-
line), the deadline for the next trial is increased by 1, provided the
deadline is not at the maximum allowable value of g.

Figure IE shows the next step—via-posture generation. In the
case shown here, the via posture is not dramatically different from
the starting posture, but this is desirable. The role of the via posture
is to serve as a posture that one can move to from the starting
posture and then move back from while the main movement is
performed so the compound movement is collision free (Constraint
7). A lower level constraint for the via posture is that it should
require as easy a back-and-forth movement as possible. Hence, via
postures should be as close as possible to starting postures, and
they should be especially close along axes of posture space whose
joint rotations have high expense factors.

Identification of the via posture relies on the same basic ma-
chinery as identification of the goal posture. The only difference is
that it uses a different constraint hierarchy for the requirements just
mentioned. Identification of the via posture is achieved by gener-
ating candidate via postures around the most promising via posture
in ever-widening shells in posture space until the deadline, d. For
each candidate via posture, a compound movement is internally
simulated, consisting of the main movement from the starting
posture to the goal posture plus the movement from the starting
posture to the via posture and back. To generate this compound
movement, each joint slated to move from its starting posture to a
via posture and back uses the same common movement time as the
main movement; the common movement time is based on the
method outlined earlier for the Rosenbaum et al. (1995) model. As
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shown in Figure 3, any joint that makes a via movement proceeds
from its starting angle to its via angle with a bell-shaped angular
velocity and then moves from its via angle back to its starting
angle with a bell-shaped angular velocity. Mathematically, the
angular velocity. uv, of any such joint as a function of normalized
time, t, for 0 < ; < IT. is

The angular velocity, vm, of the same joint making its main
movement from its starting angle to its goal angle is

vm(t) = sin(t) X sin(/). (15)

r \ ( r ) = si X s in (2 r ) . (14)

Note that Equation 15 comprises a simplification of the procedure
used in the model of Rosenbaum et al. (1995) to generate a
bell-shaped angular velocity profile; see Equations 11-13.

B
Joint Angle (deg) Joint Angle (deg)

-20
0.00 0.50 0.6B 1.00

Normalized Movement Time in Units of PI

0.00 0.30 0,50 1.DO

Normalized Movement Time in Units of Pi

D
Joint Velocity (arbitrary units) Joint Velocity (arbitrary units)

0.00 O.SQ 0.68

Normalized Movement Time In Units of PI

1.00 0.00 0.30 0.50

NormaBzed Movement Time In Units of PI

1.31

Figure 3. Superposition of angular velocity profiles (C and D) and their corresponding angular position profiles
(A corresponding to C and B corresponding to D). Curves with open circles correspond to main movements.
Curves with squares correspond to movements toward and away from via angles. Curves with filled circles are
sums of the component functions. A and C are for a movement whose via angle lies between the start angle and
goal angle. B and D are for a movement whose via angle lies on the starting-angle side, away from the goal angle.
Joint velocities begin at 0. deg = degrees: Pi = units of IT.
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Given the compound movement, vc(t), that is' internally simu-
lated,

m(t), (16)

postures that would be adopted at g evenly spaced moments in the
total time of the compound movement are checked for collision
using forward kinematics.

The last thing our model does is actually carry out a movement.
Figure IF shows a time-lapse image of this behavior. The static
image does not do justice to the verisimilitude of the computer
simulation viewed in real time (see the Author Note section for
information about how to obtain a running version of the program).
The fingers open and then close in on the object in a way that looks
lifelike.

Simulations of Prehension

Figure 4A shows a typical reach-and-grasp movement per-
formed by the model. The parameters used in this and the follow-
ing simulations appear in Table 1. As can be seen in Figure 4C,
aperture size varies with time in a manner reported in the literature.
The fingers spread apart gradually and reach a maximum separa-
tion that exceeds the separation that will ultimately be adopted.
The reason the model overspreads its fingers is that this ensures
avoidance of collision with the object before the fingers extend

B

Angular Velocity

shoulder

elbow

Angular Velocity

thumb

finger

0

Figure 4. Simulated reach-and-grasp movement. A: Cartoon of the
movement. B: Angular velocities of the shoulder, elbow, and wrist as a
function of time. C: Tangential wrist velocity (wrist speed) and aperture
(distance between tip of the thumb and tip of the index finger) as a function
of time. D: Angular velocities of the proximal phalanx of the index finger
and the interphalangeal joint of the thumb as a function of time, t = time.

enough to begin closing in. To avoid such collisions, the fingers
and arm not only make a main movement from their starting angles
to their goal angles; they also move from their starting posture to
the via posture and back again to the starting posture. For the
simulated reach-and-grasp movement shown in Figure 4, the max-
imum aperture occurs during the second half of the movement, at
62% of the movement time. This value comes close to the one
typically observed in human reaching—between 65% and 90% of
total movement time (Castiello, 1996; Jeannerod, 1981, 1984;
Wallace & Weeks, 1988). As shown in Figure 4C, as the fingers
spread apart, the arm speeds up and then slows down, taking less
time for speeding up than for slowing down. This is also what
generally happens in human prehension (Castiello, 1996; Jean-
nerod, 1981, 1984; Wallace & Weeks, 1988).

Another important property of the reach-and-grasp movement
shown in Figure 4B is that the angular velocity profiles for the
elbow and shoulder are bell-shaped. The shoulder reaches its peak
angular velocity (see Figure 4B) near the time when the finger
joint reverses direction (see Figure 4D). Note as well that the
angular velocity profiles for the wrist and finger are biphasic and
that the wrist reverses direction before the finger does. Complex
timing relations like these have been observed in behavioral stud-
ies and have been taken to connote functional linkages between the
effectors (Bootsma & Van Wieringen, 1992; Jeannerod, 1981,
1984, 1988; Paulignan, MacKenzie, Marteniuk, & Jeannerod,
1990). Our model provides a way of understanding how these
functional linkages originate.

A final noteworthy feature of the kinematics shown in Figure 4
concerns the difference between the movements of the thumb and
index finger. The thumb does not reverse direction, but the finger
does (see Figure 4D). This outcome corresponds to the observation
that in grasping the thumb is usually relatively stable compared
with the other fingers (Wing & Fraser, 1983; Wing, Turton, &
Fraser, 1986). Our model provides a way of understanding why
this difference is observed. For most reach-and-grasp tasks, the
fingers need to move more than the thumb to avoid collisions with
objects being grasped.

Effects of Object Size on the Size and Time of Maximum
Aperture

Figure 5 shows two more grasping movements—one to a small
object (Figure 5A) and one to a larger object (Figure 5B). The
starting postures are the same in the two simulations as are the
centers of the objects and all other parameters. The corresponding
aperture-time functions are shown on the right side of Figure 5,
where it can be seen that maximum finger aperture is larger for the
large object than for the small object. This outcome makes sense
from the perspective of obstacle avoidance and obstacle enclosure.
The larger the object to be grasped, the more the fingers need to
spread out to avoid premature collision.

It has been reported in many studies that maximum finger
aperture increases with the size of the object to be grasped and that
the rate of increase of the maximum aperture is lower than the rate
of increase of the object size. For example, Marteniuk, Leavitt,
Mackenzie, and Athenes (1990) reported a 0.77 cm increase of
maximum finger aperture for each added centimeter of object size.
According to Marteniuk et al., the slope is less than 1 because
participants visually underestimate the size of the object to be
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Aperture (cm)

Aperture (cm)

0.0

slope = 1.0078 - 1.1713 (l/g), R2 = .993, the slope of .77
reported by Marteniuk et al. can be obtained when l/g equals .202.
When l/g is set to .10, the slope comes close to the value reported
in a number of other studies (Bootsma, Marteniuk, Mackenzie. &
Zaal, 1994; Chiefi & Gentilucci, 1993; Goodale, Jakobson, &
Keillor, 1994; Paulignan, Jeannerod, Mackenzie, & Marteniuk,
1991; Servos, Goodale. & Jakobson, 1992; Smeets & Brenner,
1999; Zaal & Bootsma, 1993).

Besides showing that maximum finger aperture is larger for a
large than for a small object, the simulations shown in Figures 5
and 6 demonstrate that the maximum aperture comes at a later time
for the larger object. In general, the model predicts that with
identical starting postures, maximum aperture size should come
later in the movement as the size of the object to be grasped
becomes larger. Several studies have reported such a relation
(Gentilucci, Castiello, Corradini, Scarpa, Umilta, & Rizzolatti,
1991; Hofsten & Ronnqvist, 1993; Marteniuk et al., 1990). Our
model predicts this finding because of the interaction between the
main movement and the back-and-forth movement (see Figure 4).

Figure 7 presents more information about this outcome. This
graph shows the results of simulations involving 600 grasping
movements, all of which began with the same starting posture (and
so the same initial aperture). What varied in these simulations was
the size and position of the object to be grasped. For the majority
of grasps, the moment of maximum aperture occurred later as the
object size increased, as observed in the studies just cited.

Figure 5. Simulated reach-and-grasp movements to a small object (A)
and to a large object (B). Left: Cartoons of the movements. Right: Relation
of aperture size to time (t). The starting postures and locations of the targets
are the same in the two simulations.

grasped. Our model shows that the lower than unity slope need not
be explained by appealing to visual misperception, which does not
imply that misperception cannot be the source of the effect (see
also Smeets & Brenner, 1999).

Figure 6 provides more information about the basis for the
relation between maximum aperture size and object size. This
figure shows theoretical angular displacement functions corre-
sponding to aperture movements to a small object (Figure 6A) and
to a large object (Figure 6B). The change in magnitude of the main
movement causes a larger aperture overshoot for the small object
than for the large object.

The latter outcome is expanded in Table 2, where we show the
results of 1,800 simulated reach-and-grasp movements. The size of
the object was varied at random from 2.5 to 10 cm, and the object
was randomly positioned within a rectangular region (38 X 10 cm)
of the work space at 20 cm in front of the stick figure's body
midline. In three simulation runs of 600 movements each, g, the
number of subdivisions for any joint's range of motion, was set to
100, 20, or 10 (i.e., grain, l/g, of .01, .05, or .10). As can be seen
in Table 2, maximum aperture size was highly correlated with the
size of the object to be grasped. Moreover, the slopes of the best
fitting curves were less than 1.0 as reported by Marteniuk et al.
(1990). The extent to which the slopes of the best fitting curves fell
short of 1.0 depended on l/g. The less fastidious the planning (the
larger the value of \lg), the more the slope fell below 1.0. By
determining how the slope varied as a function of grain,

Influence of Distance To Be Covered on the Manipulation
Component

Figure 8 shows two more grasping movements — one to an
object close to the starting positions of the fingers (Figure 8A) and
the other to an object far from the starting positions of the fingers
(Figure 8B). The corresponding aperture-time functions appear on
the right side of the figure. No observable differences emerge
between the aperture-time functions in these two examples. In
general, the model predicts no systematic relation between maxi-
mum aperture time and distance to the object being grasped. In the
literature, although we know of one study that reported a maxi-
mum aperture increase for larger distances (Jakobson & Goodale,
1991), most studies have found no systematic relationship between
these two variables (Bootsma et al., 1994; Chiefi & Gentilucci,
1993; Paulignan et al., 1991; Zaal & Bootsma, 1993). Hence, the
model again yields an outcome similar to what is observed.

Influence of Movement Speed on Maximum Aperture Size

Wing, Turton, and Fraser (1986) reported that maximum aper-
ture increases with reaching speed. They interpreted this to mean
that increased movement speed results in increased uncertainty
about hand position. Participants opened the hand more, according
to Wing et al. (1986), to compensate for this higher uncertainty.
Wallace and Weeks (1988) replicated this relation and came to a
similar conclusion.

Our model can account for greater hand opening with higher
speed without appealing to compensation for uncertainty (see
Figure 9). The reason is that joints for small effectors (finger
joints) can be assumed to prefer quicker movements than joints for
large effectors (elbow and shoulder joints; for supporting evidence,
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A: Small Objed
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Figure 6. Theoretical basis for expecting maximum finger aperture to increase at a lower rate than size of the
object being grasped. A: Reach to a small object. B: Reach to a large object. Circles, triangles, and squares
correspond to main movements, via movements, and main plus via movements, respectively. The via movement
is the same in the two cases. The distance between the two dashed horizontal lines, representing the degree of
angular (aperture) overshoot, is larger for the small object than for the large object. Dashed vertical lines indicate
moments of maximum aperture, deg = degrees.

see Hatsopoulos & Warren, 1996; Rosenbaum, Slotta, Vaughan, &
Plamondon, 1991; Vaughan, Rosenbaum, Diedrich, & Moore,
1995). If rapid movements are required, the system relies more on
finger joints and less on arm joints if possible, but if slower
movements are required, the system relies more on arm joints and
less on finger joints if possible. This explanation is not meant to
exclude the possibility that uncertainty can affect finger aperture.
Wing et al. (1986) observed increases of maximum aperture when
participants closed their eyes, so there is reason to allow for an
uncertainty effect. Our simulations merely show that greater finger
widening at higher speeds may also stem from other sources.

Table 2
Relation Between Maximum Aperture (y) and Object Size (x)
Indexed by Proportion of Variance Accounted For

<
E

« 6 0 - -

«0

Grain (1/g)

.01

.05

.10

Best fitting regression line

y =
y =
y =

0.999-t
0.944*
0.893*

+ 0.009
+ 0.994
+ 2.188

R2

1.000
.902
.809

Note. Table values are based on 1,800 simulated reach-and-grasp move-
ments (600 simulated movements using each of three grains), g = the
number of subdivisions for any joint's range of motion.

3 4 5 6 7 8 9 1 0

Object Size (cm)

Figure 7. Moment of maximum aperture (expressed as a percentage of
movement time; MT) as a function of object size. The data points are
distinguished on the basis of an aperture overshoot index, obtained by
summing the distances between the via angles and starting angles of the
index finger and thumb joints. As the aperture overshoot index increased
(diamonds —> squares —> triangles), the moment of maximum overshoot
occurred earlier. In all cases, however, the moment of maximum aperture
increased with object size.



722

A

ROSENBAUM, MEULENBROEK, VAUGHAN, AND JANSEN

Aperture (cm)

4.5

Time (s) 1.66

Figure 8. Reach-and-grasp movements to a near target (A) and to a far
target (B). Corresponding aperture-versus-time functions appear on the
right. The scale of the ordinate is linear and identical in the two cases.

Aperture (cm)

0 Time (s)

Aperture (cm)

0 Time (s) 0.5

Figure 9. Reach-and-grasp movements to a fixed target from a fixed
starting posture at a slow speed (A) and at a fast speed (B). Corresponding
aperture-versus-time functions appear on the right. The faster movement
yields a larger maximum aperture.

Evanescence of the Low-Velocity Phase of the Transport
Component

Woodworth (1899) noted that simple pointing movements usu-
ally have two phases, a large-distance ballistic phase followed by
a smaller distance homing-in phase. Jeannerod (1981, 1984) like-
wise identified a ballistic phase followed by a low-velocity phase
in the tangential velocity profile of the wrist during prehension.
Jeannerod (1981, 1984) also observed that the onset of the low-
velocity phase usually coincides with the start of closure of the
hand, which he suggested might be due to some mechanism that
synchronizes the manipulation and transport components. Some
authors (Wallace & Weeks, 1988) have failed to find a low-
velocity phase, however, and have argued that it may not be an
essential feature of prehension. This raises the question of why the
low-velocity phase appears in some situations but not in others.

Figure 10 shows two reach-and-grasp movements in which the
low-velocity phase is present. Recall that in Figure 4 no low-
velocity phase appeared. The difference in outcomes provides a
hint about why the low-velocity phase appears in some reaches but
not in others. For the cases shown in Figure 10 the hand would
have collided with the object had it not made a detour. To achieve
such a detour, the shoulder and elbow joints had to follow a curved
path in joint space, resulting in zero crossings in their angular
velocity profiles, which in turn gave rise to a low-velocity phase
for the tangential velocity of the wrist. By contrast, in Figure 4, the
hand would not collide with the object if the shoulder and elbow

Aperture

Figure 10. Examples of two grasping movements with low-velocity
phases. A and D: Cartoons of the movements. B and E: Corresponding
angular velocity functions of the shoulder, elbow, and wrist. C and F:
Corresponding aperture-time and tangential wrist velocity functions. The
ratio of proximal to distal joint expense factors was 4:1 for the upper panels
and 1:1 for the lower panels, t = time.
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followed straight-line trajectories through joint space, so there was

no need for either joint to slow down and then speed up during the
motion. No low-velocity phase was seen for this movement as a
result. Together, these observations suggest that the collision-
avoidance requirements of prehension tasks can account for the
presence or absence of the low-velocity phase.

Timing of Maximum Aperture Size

For reach-and-grasp movements that have a low-velocity trans-
port phase, the moment of maximum aperture of the fingers is
likely to occur near the start of the low-velocity phase of the
transport component (Jeannerod, 1981, 1984). Our model can yield
this effect, as shown in Figure IOC and Figure 10F.

Grasping After Circumventing Intermediate Obstacles

Figure 11 shows that the stick figure is capable of grasping an
object even when there is more than one object in the environment
and when only one of the objects should be grasped. As shown in
Figure 11, the stick figure can avoid obstacles on the way to a final
grasp. This figure shows the culmination of what our model can

achieve.

Fitting the Model to New Prehension Data

It is one thing to say one's model can yield results like those
from previous studies. It is another to show that it can account
quantitatively for new data. We turn now to this challenge by
reporting a behavioral study of grasping that let us evaluate the
goodness of fit of the model to trajectories of the hand and fingers
in extrinsic space as well as rotations of the shoulder and elbow in
intrinsic space.

Method

Four right-handed participants volunteered. Three were male and one
was female. Their ages ranged from 24 to 32 years. Although 4 is a small
number of participants, this number is common in studies such as this one
where immense amounts of data are obtained for each participant.

Each participant was asked to move the hand from a starting position to
grasp a cylindrical object as shown in Figure 12. The participant sat at a
table raised to shoulder height so all movements could be made with just
the shoulder, elbow, wrist, and fingers in the horizontal plane. At the start

Target

Obstacle

Start

Figure I I . Example of a simulated reach-and-grasp movement per-
formed in the presence of an intermediate obstacle.

Figure 12. Top view of experimental setup. Circles indicate target
locations.

of each trial the participant's right arm rested comfortably on the surface,
with the hand positioned 20 cm in front of the body midline and with the
palm perpendicular to the table surface and facing the participant (i.e., the
thumb was up and the little finger was in contact with the table). A
cylinder, 3 cm wide and 9 cm high, was positioned at each of nine locations
corresponding to distances of 20, 30, or 40 cm from the hand at angles of
45°, 90°, or 135° relative to the near edge of the table from the participant's
perspective. Each experimental condition was tested twice, but only the
second grasp was analyzed. The participant was asked to grasp the cylinder
quickly and accurately, using a single, smooth gesture.

Movements were recorded with an OPTOTRAK 3020 motion-tracking
system (Northern Digital Corporation, Waterloo, Ontario, Canada). Five
infrared emitting diodes (IREDs) were fixed to the participant's right
shoulder, elbow, wrist, proximal lateral corner of the index fingernail, and
proximal medial corner of the thumbnail. The xyz positions of the IREDs
were sampled at a rate of 200 Hz with a spatial accuracy of better than 0.2
mm in each spatial dimension. IRED displacement data were filtered
off-line with a third-order, zero phase lag, low-pass Butterworth filter
(cutoff frequency = 8 Hz). The tangential wrist velocity and aperture time
functions were derived to determine the start and end of the grasping
movements. These were found by identifying the appropriate local velocity
minima in these functions.

We focused both on the finger-thumb paths in extrinsic space and on the
shoulder-elbow paths in intrinsic (joint) space. The finger and thumb paths
were given by the displacements of the IREDs on the finger- and thumb-
nails. The angular displacement of the shoulder was derived by determin-
ing for each sample the angle between the line connecting the IREDs on the
shoulder and elbow with the positive jr-axis running parallel to the near
edge of the table. The angular displacement of the elbow was derived by
determining the angle between the line connecting the IREDs on the
shoulder and elbow and the line connecting the IREDs on the elbow and
wrist.

Results

The results presented here first concern the finger-thumb paths
in extrinsic space and then concern the shoulder-elbow paths in
intrinsic space. For the intrinsic space analysis, we focus only on
the shoulder and elbow, omitting the wrist, because the shoulder
and elbow were the prime movers for the task. Moreover, once the
fingertip locations (in extrinsic space) and the shoulder and elbow
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angles (in intrinsic space) were known, no additional information
was conveyed by the wrist.

Observed and modeled finger-thumb trajectories in extrinsic
space. The finger and thumb trajectories of the 4 participants are
shown in Figure 13. Each trajectory was time normalized to 100
data points by means of spline-function interpolation to facilitate
comparison of the observed trajectories with the model-based
trajectories and to facilitate comparison of the observed trajecto-
ries from the different participants. Our strategy for model evalu-
ation was to compute mean square errors (MSEs) between every
participant's trajectory and every other participant's trajectory to
see how well each participant's data could predict the data of every
other participant. We also computed the MSEs between model-
based trajectories and every participant's trajectory to see whether
the model could do as well as other participants in accounting for
each participant's data.

After time normalization, the movements were modeled using
the parameters listed in Table 1. The simulations were performed
by giving the model the average initial posture of the participants
and, for each task, a spatial description of the object to be grasped
(i.e., its position and size). The model's task was the same as the
participant's—to grasp the object. We allowed the model to per-
form each task with each of 27 combinations of expense factors for
the shoulder, elbow, and wrist given by setting the expense factor
of each of these three joints to 0.5, 1.0, or 1.5 times the expense
factors of the finger joints, which were set arbitrarily to 1 (see the
right-hand column in Table 1). Each model trajectory consisted of
100 x-y pairs corresponding to an instructed movement duration of
100 time units. Because each participant contributed 100 x-y pairs
for each of nine targets, each time the model was fitted to the data,
there were just three free parameters for 900 data points.

An example of modeled finger-thumb paths is shown in Fig-
ure 14. These paths were obtained with expense factors of the
shoulder, elbow, and wrist set at 0.5, 0.5, and 1.5, respectively.

40
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-20 0 20
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40 40
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Figure 13. Observed finger paths (solid lines and closed markers) and
thumb paths (dashed lines and open markers) of Participants 1-4. Circles,
triangles, and squares correspond to the 20-, 30-, and 40-cm object dis-
tances, respectively.

40

.20

-20 0 20
X(cm)

Figure 14. Modeled finger paths (solid lines and closed markers) and
modeled thumb paths (dashed lines and open markers) from a simulation in
which the expense factors for the shoulder, elbow, and wrist were, respec-
tively, 0.5, 0.5, and 1.5 times the expense factor of the finger joints, which
were all set arbitrarily to 1. Circles, triangles, and squares correspond to the
20-, 30-, and 40-cm object distances, respectively.

We compared the modeled and observed finger trajectories as
well as the modeled and observed thumb trajectories in the fol-
lowing way. First we normalized the two trajectories with respect
to their initial position by linearly shifting them to (0, 0). Next, we
squared the distance between the trajectory samples at correspond-
ing times for the corresponding tasks. Finally, we summed the
squared deviations and divided the sum by 100 (i.e., the number of
data points), yielding a mean sum squared error (MSB in squared
centimeters), reflecting the dissimilarity between the two com-
pared trajectories for each task. These MSEs were computed
between every model-based trajectory and every participant's tra-
jectory to see how well the model could predict each participant's
data. We also computed the MSEs between every participant's
trajectory and every other participant's trajectory to see how well
each participant's data could be predicted by the data of every
other participant.

Figure 15 shows the squared deviations for the finger trajecto-
ries as a function of normalized time. The squared deviations for
the thumb trajectories are not shown but were very similar. As
illustrated in Figure 15, the squared deviation functions were
nonmonotonic. The squared deviations between model-generated
and human-generated finger positions increased and then de-
creased as a function of time. Thus, any participant's finger posi-
tion was usually better predicted by another participant's finger
position at the end of the movement than during the course of the
movement. The fact that the error for intermediate positions was
generally as high for participant-participant comparisons as for
model-participant comparisons suggests that the model may have
done about as well as it could have when fitted to the participant's
movement paths.

Observed and modeled shoulder-elbow trajectories in intrinsic
space. The results just described pertained to the finger's and
thumb's movements in extrinsic space. Complementary analyses
pertained to the model's fits to the shoulder and elbow's move-
ments in intrinsic (joint) space. These were important to consider
because the model relates intrinsic planning to extrinsic perfor-
mance, making it important to check that the model could account
as well for joint-space movement paths as for extrinsic-space
movement paths.

Figure 16 shows shoulder-elbow trajectories of the 4 partici-
pants. Note that these trajectories are for the same reaches as in
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Figure 15. Squared deviations of finger-finger work-space trajectory comparisons as a function of normalized
time. Each panel shows the results of trajectory comparisons for reaches to each of the nine targets. The four
rows correspond to Participants 1-4. The four columns correspond to Participants 2-4 and one version of the
model (whose shoulder, elbow, and wrist expense factors were set, respectively, to 0.5, 0.5, and 1.5 times the
finger expense factors). The top left panel shows the squared deviations between Participant 2 and Participant 1,
the top right panel shows the squared deviations between the model and Participant 1, and so on. Different
ordinate scales are used to reveal the shapes of all the squared deviation functions. Other simulations yielded
similar time-varying errors.

Figure 15. Figure 16 shows that for objects located behind the
dorsum of the hand at the hand's start position (the 45° object-
angle condition), the movements yielded highly curved joint-space
paths. By contrast, for objects located in front of the hand at the
hand's start position (the 135° object angle condition), the joint-
space paths were more linear. These results were expected in view
of the fact that when the object was initially behind the hand,
circuitous movements were needed to avoid colliding with the
object prior to grasping it. In contrast, when the object was initially
in front of the hand, such circuitous movements were unnecessary.
(To the best of our knowledge, this is the first study of prehension
movements directed to objects located initially behind the hand.)

An example of modeled shoulder-elbow paths using the param-
eters listed in Table 1 is shown in Figure 17. These paths resulted
from a simulation in which the expense factors of the shoulder,
elbow, and wrist were 0.5, 0.5, and 1.5, respectively. The simu-
lated shoulder-elbow paths shown in Figure 17 are comparable to
those shown in Figure 16.

We evaluated the goodness of fit of these theoretical paths to the
observed paths by computing the errors in joint space (MSEs in

degrees squared) between the two paths, using the same procedure
as for the observed and modeled finger-thumb trajectories. We
also computed the MSEs between the joint-space paths of each
pair of participants to see whether the model did as well in
predicting participants' movements through joint space as other
participants did. -

The quality of the joint-space fits as a function of time appears
in Figure 18, where it can be seen that the errors between the
predicted and observed joint-space paths increased and then de-
creased, as was the case for the finger paths in extrinsic space
(Figure 15). This nonmonotonic trend was evident regardless of
whether the errors derived from fits of the model to any given
participant's data or from fits of a participant's data to any other
participant's data. Thus, the capacity of the model to predict the
movements of the joints was about as good as the capacity of other
participants to predict those movements.

The next figure, Figure 19, shows something we did not show
for the fingertip data, although the outcome is similar. Figure 19
shows how the goodness of fit depended on the parameters used.
The most important message to take from this figure is that the
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Figure 16. Observed shoulder-elbow paths for Participants 1-4.
Squares, triangles, and circles correspond to the 45°, 90°, and 135° object
angles, respectively, deg = degrees.

model-to-participant fitting errors were generally of the same
magnitude as the participant-to-participant fitting errors. The fact
that the model could generally predict participants' data as well as
other participants could was not just a reflection of high noise in
the data, because the fitting errors were only 2%, or 100 degrees
squared, relative to the squared mean joint-space trajectory length
of 4,900 degrees squared. (For the fingertip displacement data, the
fitting errors were 1.5%, or 25 cm2, relative to the squared mean
fingertip trajectory length of 1,600 cm2.) Moreover, the model was
not equally predictive of participants' performance no matter what
parameters were used. As shown in Figure 19, there were some
parameter values for which the model failed to predict partici-
pants' data as well as other participants' data did. This means that
the model was rejectable.

Visual inspection of Figure 19 suggests that variations in the
model's parameters had consistent effects over participants. This
impression was confirmed in an analysis of variance that evaluated
the effects of shoulder, elbow, and wrist parameter values on mean
squared deviations, with participants as the random factor. There
were three values for each joint: 0.5, 1.0, or 1.5 times the finger
expense factor, which, as mentioned earlier, was arbitrarily set
to 1. The three-way interaction of Shoulder X Elbow X Wrist was
highly significant, F(8, 24) = 6.56, p < .0001, consistent with the
hypothesis that variation of the parameters had reliable effects on
the goodness of fit to the shoulder-elbow trajectories of individual
participants. Globally, the best fit was achieved with shoulder,
elbow, and wrist expense factors of 0.5, 0.5, and 1.5, respectively.

Final Remarks About Prehension

The foregoing section has shown that the model can account
quantitatively as well as qualitatively for detailed features of the
coordination of the effectors in reaching and grasping. Qualita-
tively, the model captures most of the observed kinematic effects
observed in previous studies of prehension. Quantitatively, it ac-

counts for new prehension data for finger and thumb motions in
extrinsic space and for shoulder and elbow rotations in intrinsic
space. Unlike previous prehension theories, which have focused on
the positions of the wrist and fingertips without regard to the
activity of more proximal effectors (e.g., Hoff & Arbib, 1993), the
present model provides a way of generating movements that in-
volve all the needed joints. Because the present model can produce
complex reach-and-grasp movements, such as reaches for objects
behind the hand, it takes the study of prehension a step forward.

A few items deserve mention before we leave the topic of
prehension. First, we have not reported the consequences of dy-
namic deadline setting in the generation of possible goal and via
postures. Our simulations have shown, as expected, that when
similar reaches are required in successive trials, the deadline for
planning decreases. The system becomes an expert for similar
reaching tasks tested in succession because, as more and more
trials require similar reaches, there is less benefit of generating
new postures. Previously stored postures are available for the
reaches, so the planning deadline decreases. In addition, the move-
ments have lower travel costs, in keeping with observed practice-
related increases in movement efficiency (Sparrow & Irizarry-
Lopez, 1987).

The second item that deserves mention concerns the indepen-
dence of joint motions assumed in the model. We have treated all
the joints as autonomous, primarily for convenience (see Table I ) .
However, it is well-known that there are linkages between effec-
tors (Turvey, 1990). As some of our simulations have shown (see
the earlier discussion surrounding Figure 4), our model yields
behaviors that have been ascribed to functional linkages, though in
our simulations no linkages were built in. From this outcome, we
do not mean to suggest that linkages are unimportant. On the
contrary, treating all the joints as autonomous has allowed us to see
where functional linkages, whether real or merely apparent, may
originate. Interestingly, the simulation program ran more quickly
when we coupled the proximal and distal joints of the index finger,
reflecting the high correlations between those joints, and when we
coupled the proximal and distal joints of the thumb, also reflecting
the high correlations between those joints. Speeding up a program
on a serial computer by using coupling does not constitute proof
that coupling is computationally useful for the highly parallel
nervous system. Still, our experience suggests that even if func-
tional linkages are not strictly necessary, they are helpful.
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Figure 17. Modeled shoulder-elbow paths from a simulation in which
the expense factors for the shoulder, elbow, and wrist were, respec-
tively, 0.5, 0.5, and 1.5 times the expense factor of the finger joints, all of
which were arbitrarily set to 1. Squares, triangles, and circles correspond to
the 45°, 90°, and 135° object angles, respectively, deg = degrees.
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Figure 18. Squared deviations of shoulder-elbow joint-space trajectory comparisons as a function of normal-
ized time. Each panel shows the results of trajectory comparisons for reaches to each of the nine targets. The four
rows correspond to Participants 1-4. The four columns correspond to Participants 2-4 and one version of the
model (whose shoulder, elbow, and wrist expense factors were set, respectively, to 0.5, 0.5, and 1.5 times the
finger expense factors). The top left panel shows the squared deviations between Participant 2 and Participant 1,
the top right panel shows the squared deviations between the model and Participant 1, and so on. Different
ordinate scales are used to reveal the shapes of all the squared deviation functions. Other simulations yielded
similar time-varying errors.

A third item pertains to precedents for the ideas behind our
prehension simulations. The idea of a functional distinction be-
tween planning hand and arm activity was promoted by Arbib,
Iberall, and Lyons (1985); Hoff and Arbib (1993); MacKenzie and
Iberall (1994); Iberall and Fagg (1996); and Uno, Fukumura,
Suzuki, and Kawato (1993). The idea that different hand and arm
postures are selected on the basis of demands of the task to be
performed follows not only from our own general line of theoriz-
ing but also from work of Klatzky and her colleagues (Klatzky,
Pellegrino, McCloskey, & Lederman, 1993) showing that a small
set of basic manual activities can be hypothesized for haptic tasks.
A central idea from Klatzky et al. (1993) is that different postures
are adopted depending on the fit of possible movements to the
demands of the task to be performed. The choice of whether to
pinch, poke, pat, or clench, for example, depends on the chance
that each of these activities can achieve the necessary physical
transformations for the task at hand. Our notion of selecting
candidate hand and arm postures according to a constraint hierar-
chy is similar.

A final remark about reaching and grasping is that, although the
preceding discussion has focused on the coordination of the arm,
hand, and fingers, the mechanisms adduced here may also apply to
other forms of prehension. Specifically, the model may also apply
to tasks that involve grasping without prototypical grasping effec-
tors (see Flanagan & Tresilian, 1993). Sometimes actors grasp
objects with two hands rather than with the fingers of one hand, or
they use the upper arm and torso (e.g., when holding a newspaper
under one's arm), or they may use the torso alone (e.g., when
pushing an object against the wall with one's chest while using
both hands to make a ceiling repair). These capabilities illustrate
the great flexibility—indeed the great creativity—that is brought to
bear in everyday physical activity. The present model provides one
account of how this creativity may emerge. Although we have not
explicitly modeled grasping with effectors other than the finger
and thumb, it would be straightforward to do so. Postures would be
evaluated according to their capacity for satisfying the current
grasping task, and the postures that would be promoted would be
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Figure 19. Mean sum of squared deviations between modeled and observed shoulder-elbow joint-space
trajectories. Each horizontal dashed line corresponds to a participant-participant comparison (participant
numbers are given on the right) for reaches over 100 time values to the nine targets. The plotted points are the
mean squared deviations between the shoulder-elbow joint-space trajectories of the model and of Participant 1
(circles), Participant 2 (triangles), Participant 3 (squares), and Participant 4 (diamonds). Twenty-seven versions
of the model were tested. These had expense factors of 0.5 (white horizontal bars), 1.0 (gray horizontal bars),
and 1.5 (black horizontal bars) for the shoulder (S), elbow (E), and wrist (W). Points above the top horizontal
dashed line correspond to parameter combinations for which the model predicted participants' data more poorly
than any participant did. All other points correspond to parameter combinations for which the model predicted
participants' data about as well as other participants did. deg = degrees.

ones that are physically possible given whatever limits are im-
posed on the effectors normally used for grasping.

General Discussion

This article has presented a model of motor planning that
updates an earlier model (Rosenbaum et al., 1995). Whereas the
earlier model relied on weighted averaging of stored postures to
identify a goal posture, the new model relies on a two-stage
process of selecting a most promising stored posture and then
generating a possibly better posture to serve as the goal posture.
Evaluation of the stored and generated postures is done with
reference to a constraint hierarchy that defines the task to be
performed. The model relies on internal simulation (forward mod-
eling) of possible movements to the goal posture from the starting
posture to test for collisions with obstacles. Collision-free move-
ments are generated by searching for via postures that allow for
acceptable movements composed of movements made to and from
the via posture while a movement is made from the start posture to
the goal posture. As was shown here, this approach makes it
possible to provide qualitative accounts of a broad range of kine-
matic phenomena from previous prehension studies and to fit the
kinematics of complex reach-and-grasp movements both in intrin-
sic and extrinsic space.

In the remainder of the article we undertake two final aims.
First, we consider similarities and differences between our claims
and those of others. Second, we discuss remaining challenges.

Our Claims and Those of Others

Claims of Guenther, Hampson, and Johnson (1998)

One approach we did not discuss before was advanced by
Guenther, Hampson, and Johnson (1998). These authors were
concerned with the control of speech, although they indicated that
their perspective could also extend to manual control.

Guenther et al. (1998) argued against motor planning models
that emphasize final-posture planning. Their main arguments were
twofold. First, they said that physical actions are rarely performed
for the sake of achieving goal postures. Second, they suggested
that a source of evidence for final-posture planning, achievement
of invariant final postures, is misleading. Guenther and Micci
Barreca (1997) challenged the earliest version of the posture-based
model (Rosenbaum, Englebrecht, Bushe, & Loukopoulos, 1993)
on these grounds.

We consider each of these points in turn to see how and whether
they vitiate our approach. First, in connection with the argument
that physical actions are rarely performed for the sake of achieving
goal postures, although we understand this claim, we fail to see
why it indicates that final postures are not planned. In the case of
speech, the normal aim may indeed be to generate invariant acous-
tic targets, and for manual pointing and manual prehension the
normal aim may be to achieve invariant spatial targets. Indeed, in
our constraint hierarchies, achieving spatial targets (or more pre-
cisely bringing specified contact points acceptably close to spatial
targets) generally takes priority over finding final postures or
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movements to those final postures. Saying that there are higher
purposes than achieving final postures does not obviate the need
for finding motoric means to achieve those higher purposes.

In connection with Guenther et al.'s (1998) second argument—
that achievement of invariant final postures is a misleading source
of evidence for final posture planning—Guenther et al. granted
that some studies have shown relative invariance of final arm
postures even when considerable variation was physically possible
(e.g., Cruse, Briiwer, & Dean, 1993). However, Guenther et al. did
not find these results persuasive. Quoting from an earlier report by
Guenther and Micci Barreca (1997), they suggested that

the only invariant target for a reaching movement is a spatial target of
the hand and .. . movement trajectories are planned in spatial coordi-
nates, b u t . . . the mapping from planned spatial trajectories to the
muscle contractions needed to carry them out contains biases that
favor certain arm postures over others, (p. 612)

In the Guenther et al. article about speech motor control, the
authors made an analogous claim, arguing that just as one can be
misled into thinking that final-posture planning is primary for
manual control, one can be misled into thinking that articulatory or
constrictive targets are primary for speech. What a final-posture or
articulatory target cannot explain, according to Guenther et al., is
that speakers can immediately adapt to bite blocks and other
perturbations to produce desired utterances. Furthermore, even
without perturbations, different oral configurations allow for pro-
duction of the same phoneme.

The suggestions made by Guenther et al. (1998) raise an inter-
esting challenge to the view that the planning of final postures is
primary. However, our model does not say that final-posture
planning is primary, nor does it rely on invariance of adopted
postures. Our model predicts that different final postures will be
adopted depending on initial positions. It says this because final
postures are planned partly with respect to travel costs from
starting postures. Final postures have been found to depend on
initial postures (Desmurget, Grea, & Prablanc, 1998; Soechting et
al., 1995), and the way they do accords with what our model
predicts (Fischer et al., 1997). Furthermore, our notion of the
constraint hierarchy allows, and indeed in most cases of reaching
to spatial targets requires, that spatial constraints take priority over
postural ones. Thus, our model is consistent with the claim that
spatial targeting is more important than postural targeting. In fact,
a recent adaptation study (Rogosky & Rosenbaum, 2000) explic-
itly tested the hypothesis that posture targeting is subordinated to
spatial targeting. That study yielded positive conclusions about this
hypothesis and its fit with the posture-based model.

With regard to speech, although our model does not address
speaking per se, it would place the adoption of final vocal tract
postures (or constrictions) secondary to the achievement of desired
sounds, just as it places the adoption of final limb and trunk
postures secondary to the achievement of desired hand (or contact
point) locations. A strength of our model is that it allows for the
fact that there are some tasks for which postures (manual or oral)
do come first, such as gesturing or making faces, and others for
which they do not, such as hitting a desired elevator button.
Collectively, these observations lead us to conclude that it is
misleading to say, as Guenther et al. (1998) did, that goal postures
are not planned. In our view goal postures are planned but with
different priorities depending on the task.

Claims About Obstacle Avoidance

Now we turn to the relation of our model's claims about obsta-
cle avoidance to others' claims about this topic. Our approach
shares features with other psychologically oriented approaches to
obstacle avoidance. Like Mel (1990, 1991), we invoke internal
simulation as a basis for collision checking. The notion that actors
can mentally simulate movements has gained considerable support
from both behavioral and physiological studies (see Jeannerod,
1994, for a review). Our claim that movements must be withheld
if they are expected to result in collision is reminiscent of the idea
that successful obstacle-avoidance behavior requires inhibition of
initial movement impulses. This form of inhibition may be lacking
in babies (Diamond & Gilbert, 1989; Lockman, 1990; Lockman &
Thelen, 1993).

Claims About Cost Containment Rather Than
Optimization

One way our model differs from others in the motor control field
is that it does not rely on optimization. A great deal of research,
mainly stimulated by Flash and Hogan's (1985) proposal that the
motor system minimizes mean squared jerk, has relied on the idea
that one or more cost might be minimized in movement production
(e.g., Kawato, 1996a, 1996b; Soechting et al., 1995). Our approach
differs from this one in that it relies on cost containment rather
than minimization. By selecting goal and via postures that allow
for acceptable performance, we satisfice (Simon, 1955) rather than
optimize.

Claims About Elimination by Aspects

The way satisficing is achieved in our model has implications
for research on decision making and search. Goal postures and via
postures are identified in our model through a weeding out proce-
dure known as elimination by aspects (Tversky, 1972). Research
on decision making has shown that elimination by aspects is more
powerful than other choice methods in complex problem situations
(Janis & Mann, 1996). That it has proven useful here attests to the
power of the elimination-by-aspects approach. Moreover, to the
extent that our model is an accurate depiction of biological motor
planning, our application of elimination by aspects to motor plan-
ning extends the domain of that method to a lower level of decision
making (the perceptual-motor level) than it has occupied before.
This outcome might be taken as an indirect source of support for
the view that the computational substrates of perceptual-motor
functioning and intellectual functioning are fundamentally similar
(e.g., Calvin, 1994; Piaget, 1952; Rosenbaum, Carlson, & Gil-
more, 2001).

Remaining Challenges

Our model still faces challenges. One is to enable it to generate
the same written or drawn output with any effectors. This example
of "motor equivalence" is a core challenge for any model of motor
control. The model of Rosenbaum et al. (1995) was extended to
achieve handwriting with different effectors (Meulenbroek, Rosen-
baum, Thomassen, Loukopoulos, & Vaughan, 1996), and the new
model can presumably be extended this way as well. The principal
means used by Meulenbroek et al. (1996) to produce connected
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strokes in writing and drawing was cascading of discrete move-
ments directed to target locations (points of maximum curvature in
the required graphic output) through different via locations (points
of minimum curvature in the required graphic output). Cascading
of movements to ensure smoothly connected strokes has been used
in other writing models (Bullock, Grossberg, & Mannes, 1993;
Edelman & Flash, 1987; Morasso & Mussa-Ivaldi, 1982; Morasso,
Mussa-Ivaldi, & Ruggiero, 1983), and continuity of performance
in other domains (e.g., speech) might be similarly achieved by
allowing planning of future movements to occur while earlier
movements are under way.

A second challenge facing the model is to extend it from two
spatial dimensions to three. More specifically, there is a need to
extend the model so that, instead of merely generating movements
in a plane, it can also generate movements in a volume. So far, the
model has only generated movements in one plane at a time—the
sagittal plane for pointing and the horizontal place for reaching and
grasping. Extending the model to three spatial dimensions should
be straightforward, however. This fact actually provides another,
previously unmentioned, reason to embrace a posture-based ap-
proach to motion planning.

A great deal of discussion has occurred recently in motor-
control circles about the noncommutativity of joint rotations. The
term noncommutativity refers to the fact that the order in which
joints are rotated in three orthogonal dimensions affects the final
position of the limb (Gielen, Vrijenhoek, & Flash, 1997). To gain
familiarity with this problem, consider a spatial coordinate frame
centered on your right shoulder such that the x-, y-, and z-axes
correspond to the right-left, in-out, and up-down dimensions,
respectively. While standing, perform the following two series of
shoulder rotations. Series A should be performed as follows.

Al . Begin with your right arm dangling by your side with the
palm facing in.

A2. Raise your extended arm 90° about the x-axis. Your arm
will be straight out in front of you, and your palm will face left.

A3. Rotate your extended arm 90° about the y-axis. Your arm
will now be straight out in front of you, and your palm will face
down.

A4. Finally, rotate your extended arm 90° about the z-axis. Your
arm will now be directed to your right, and your palm will still face
down.

Next, perform Series B.
B I . As before, begin with your right arm dangling by your side

with the palm facing in.
B2. Rotate your extended arm 90° about the z-axis. Your arm

will be by your side, and your palm will face forward.
B3. Raise your extended arm 90° about the jr-axis. Now your

arm will be straight out in front of you, and your palm will face up.
B4. Finally, rotate your extended arm 90° about the y-axis. Your

arm will be in front of you, and your palm will face left.
The final position in Series B is different from the final position

in Series A, though the rotations in the three spatial coordinates
were the same; only their order differed. If joint rotations were
commutative, final positions would not depend on rotation order,
as is the case, for example, in addition, where it does not matter
whether one adds 1 to 2 or 2 to 1.

Noncommutativity of joint rotations is a problem for motion-
based approaches to motion planning because, unless joints are
rotated in a fixed order, there is no guarantee that the same final

posture will be reached on different occasions, even given the
same starting posture. Because one rarely has the luxury of always
moving from the same starting posture, the unpredictability of final
positions is compounded if one takes a motion-based approach. By
contrast, in a posture-based motion planning system, these prob-
lems disappear. Moving from a starting posture to an already
identified goal posture via interpolation through joint space, as
assumed in our model, circumvents the noncommutativity problem
because the goal position is defined ahead of time, not a posteriori
based on the movement that is attempted. This implies that the
extension of our approach to movement in three spatial dimensions
is simpler than it would be if we used a motion-based planning
system. (We thank C. C. A. M. Gielen, personal communication,
January 2000, and J. Smeets, personal communication, April 2000,
for confirming this point.)

A third challenge for the model is to extend it to dynamics—that
is, to have it generate forces (muscle tensions) as well as joint
angles and be sensitive to gravitational and other forces. This
challenge was mentioned at the end of the Rosenbaum et al. (1995)
article, but we felt that basic computational issues, principally
concerning search, had to be dealt with first. In principle, the
constraint hierarchy can include requirements concerning forces,
in which case the approach developed here should extend to
kinetics. The computations involved in inverse dynamics are for-
midable, however, which is one reason why we have confined
ourselves so far to kinematics.

A fourth challenge for the model is to account for variability in
movement (see Meyer, Smith, Kornblum, Abrams, & Wright,
1990; Wing, 1993). Currently, the only source of noise in the
model is randomness of initially stored postures, which we have
used in some simulations (not reported here). Adding variability to
the processes assumed in the model could allow us to evaluate the
model in interesting ways. For example, if obstacle-avoidance
movements were composed of two independent movement paths,
the variability of those movements might be similarly decom-
posed. (We thank R. Flanagan, personal communication, May
1998, for pointing this out.)

A fifth challenge for the model is to cast it in a neural network
as others working in this area have already done (e.g., Bullock,
Grossberg, & Guenther, 1993; Kawato, 1996a; Mel, 1990, 1991;
Morasso & Sanguined, 1995; Mussa-Ivaldi, Morasso, & Zaccaria,
1988; Sporns & Edelman, 1993). Apart from the fact that a model
should have neural or quasi-neural elements to be brainlike, a
neural-network style of representation may make it easier to
achieve something our model allows but does not yet achieve—
bidirectional communication between levels of control. Specifi-
cally, our computer simulation does not yet have a means of
altering a goal posture if subsequent movement planning indicates
that a movement to the initially chosen goal posture will be very
costly. In principle, we could build this into our current architec-
ture so a new goal posture is sought after an unwieldy movement
turns out to be the only means of reaching it, after which a new
movement to that second goal posture could be chosen, and so on.
The problem with this approach is that if the second goal posture
and associated movement were no better than the first, or if the
third goal posture and associated movement were no better than
the first or second, there could be a serious backtracking problem
like the one noted earlier in connection with Mel's (1990, 1991)
model. A neural-network model, or more specifically, a model that
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allows for bidirectional communication during planning, might be
able to avoid this problem as Kawato's (1996a, 1996b) neural-
network model, which explicitly allows for bidirectional cross talk,
already does.

A sixth challenge for the model is to address more fully the issue
of movement learnability. Our model relies on stored or learned
postures. The strongest form of our model would say that move-
ments cannot be learned. A weaker form would say that they can
be. If the weaker form of the model were adopted, the learning of
movements could entail learning parameters of trajectories given
some trajectory prototype, or learning different movement cost
functions in different contexts, or both. If movements were
learned, they could either be linked to stored goal posture or not.
A number of investigators have explicitly modeled memory for
movement (e.g., Bullock, Grossberg, & Guenther, 1993; Houk,
Buckingham, & Barto, 1996; Jordan, Flash, & Arnon, 1994;
Lukashin, Wilcox, & Georgopoulos, 1994). It makes sense that
information about movements could be learned, for how else could
a violinist, say, recall the timing and manner of his or her bow
strokes for a particular piece? Some motor activities may not be
based on representations of final postures. For example, although
saccadic eye movements are elicited by position error signals,
pursuit eye movements are elicited by retinal velocity error signals.
Given these considerations, it would be unwise to make the strong
claim that goal postures can be learned but movements cannot be.
On the other hand, the fact that final positions are better remem-
bered than movements raises the question of why that outcome has
been obtained so often.

A speculative answer to this question is that physically arriving
at a final position is generally a higher level goal than physically
moving toward a final position (e.g., pushing an elevator button
depends more on how the finger comes in contact with the button
than on how it arrives at the contact point). This may be why it is
so natural to use the term end synonymously with purpose.

It is useful here to make an analogy to language, where it is
almost universally accepted that there are different levels of lan-
guage production. The semantic level is higher than the movement
(utterance) level, for example (Dell, 1986; Fromkin, 1971). It is
well-known that in recalling sentences, the information that is
preserved the longest corresponds to the highest level (Sachs,
1967). Thus, surface forms are forgotten quickly, whereas sentence
meanings are retained longer. This analogy suggests that goal
postures might be specified before movements, as assumed in our
model, because goal postures occupy a higher functional level than
movements do. Furthermore, just as there are different ways to
verbally express the same idea, there are different ways to move to
the same goal posture. Identifying different ways of expressing an
idea might rely on retrieval of stored utterances or on generating
utterances through rule or rulelike systems. Similarly, identifying
different ways of moving to a goal posture might rely on retrieval
of stored movements or on generating movements de novo using
rules or cost functions like the ones we have discussed. The model
we have developed does not resolve this issue, but may help
stimulate future research on it.
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