Topic-04c.doc

ME529 Combustion and Air Pollution

Topic 04c.  Simultaneous Reactions
4.c1 Let's consider a closed system with 8 species (A, B, C, D, E, L, M, and N) that are subject to two simultaneous reactions where species E is inert:
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Because species E is inert we can drop it from the reaction:
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where the
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 are stoichiometric coefficients.  Note that:

1) E is an inert species;

2) A is common in both reactions but 
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; and

3) the 
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 do not correspond to the number of moles present - but changes in the number of moles are related to the stoichiometric coefficients, that is,
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where the minus sign indicates that A, B, etc., are consumed when C, D, etc., are produced and the proportionality factor, 
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, indicates the change in 

, the extent of reaction.   Since A is involved in both reactions, the total change in A is:
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Also, 
[image: image11.wmf]0

=

E

dn

 because E is inert.

In parallel to our prior development, we can write (for reacting ideal gases):
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where the equilibrium constants are:
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The mole fractions 
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 must be evaluated by considering all the species present, including inert compounds like E, so the total number of moles is:
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For a given T and p, we have two equations for the equilibrium constants, and each mole fraction can be expressed in terms of two unknown variables.

This procedure can be extended to systems with many simultaneous independent reactions - you end up using a computer because of the nonlinear equations for Kp (e.g., Newton's method or brute-force bisection for finding roots) - but there is a better way to do this.

4.c2 Lagrange Method of Undetermined Multipliers

We can use the Lagrange method for finding the maximum of a function.  This approach has been around since the 1700's when finding the minimum or maximum of a function was a major challenge in mathematics.  Working on extrenum problems ultimately resulted in the development of the calculus of variations we use today.

Consider a function of several variables
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and you want to find the extrenum (maximum or minimum) of p.  You all remember how to do this; take the derivative of the function and set it equal to zero:
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If xi are independent, each partial derivative is equal to zero and you have to find the maximum/minimum for n equations.
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The problem of finding the extrenum of a function of several variables is called a problem in free maxima and minima.

Example 1: Test for relative maxima and minima the function p defined by
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Solution:  Take the partial derivatives with respect to x and y and set equal to zero:
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Solve simultaneously.  Write the equations as:
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The 2nd equation vanishes only when y = 0 or x = 1.  If y = 0, the 1st equation gives x = 0 and x = 2 as roots.  If x = 1, the 1st equation gives y = ( 1.  Hence, the critical points are:

(0,0), (2,0), (1,1), (1,-1)

To find out which critical points are maxima, minima or saddle points, apply the second derivative test, that is, take the second partials of the equation with respect to x and y:
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The second derivative test says that at critical points:

a) the critical point (a,b) is a local minima if
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b) the critical point (a,b) is a local maxima if:
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c) the critical point (a,b) is a saddlepoint if:
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d) the test returns no information about the critical point (a,b) if:
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For our example, 

a) at (0,0), 
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b) at (2,0), 
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c) at (1,1), 
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d) at (1,-1), 
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Example 2: In three-dimensional space find the point on the plane S: 2x + 3y - z = 1 which is closest to the origin.

Solution:  The function at 
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 represents a distance function which has a specific value at each point on the plane S.  The minimum of the function 
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occurs at the same point as the minimum of d, and p is simpler to handle.  Substitute for z from the equation of the plane, and so we must minimize:
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A critical point must be a solution of the equations
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and if we solve these equations simultaneously we obtain
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From the geometry of the problem, we know that (1/7, 3/14) corresponds to a minimum.  The point on S corresponding to (1/7, 3/14) is found by substitution into the equation for the surface S.  The answer is (1/7, 3/14,-1/14).

Note that the problem of finding the critical points in the first example is quite different from that of finding those of the second example because, in the latter case, the additional condition is attached.   Because of the condition, this is a problem in constrained maxima and minima.  The constraint is called a side condition.  Problems in extrenum may have one or more side conditions, and these side conditions are usually crucial.  For example, the minimum of the function p in the second example without a side condition is obviously zero.

We just solved the problem of minimizing the second example.  The method of Lagrange Multipliers is another interesting way to solve the same problem because it changes a problem in constrained maxima and minima to a problem in free maxima and minima.

Another example, revisited: Let's apply the method of Lagrange Multipliers to the second example that we just solved.  We first introduce a new variable, (, and form the function:
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The problem of finding the critical points with a side condition can be shown to be equivalent to that of finding the critical points of the above function with four variables x, y, z, and (.  Proceed by finding the partials with respect to x, y, z, and (, and setting these expressions equal to zero:
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Note that 
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 is the side condition.  So any solution to the problem will automatically solve the side condition.  Solve the equations simultaneously by writing:
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and we get: 
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Which is the same result as obtained earlier.

The Method of Lagrange Multipliers is stated, in general, as follows: To find the critical points of a function
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subject to side conditions or constraints (where the xi are not independent).  (Here are m constraints:)
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Combine the original function and the constraints and form a Lagrangian:
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where the (js are called the Lagrange multipliers - there is one Lagrange multiplier for each constraint.  Set 
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, substitute into the constraint equations and solve for xi.  Note that you end up with n partial differential equations plus m constraints for n+m equations to find n + m unknowns: n xi and m (j .

Another example of the manipulations:

Maximize the function p(x, y, z) = 8 x y z subject to the constraint

((x,y,z) = x2 + y2 + z2 - 1 = 0

First, form the Lagrangian:


[image: image55.wmf](

)

1

8

2

2

2

-

+

+

+

=

+

=

z

y

x

xyz

p

L

l

ly


Next, take the partial derivative with respect to each variable:
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Now do some algebra.  Substitute the 2nd partial into the 1st partial:
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Substitute the 3rd partial into the 2nd partial:
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Substitute the 1st partial into the 3rd partial:
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Substitute the above three results into the constraint:
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Substitute the last result into the original function p :
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4.c3 Combustion Example

In combustion, recall that entropy is a maximum at equilibrium.  The entropy of a system with r species will have a functional dependence on each species as well as on two properties of the system (for example, internal energy and volume - which can be expressed in terms of temperature and pressure):
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To use our old method of finding the equilibrium constants Kp we need to know all the species and how much we started with.  The Lagrange multiplier method is easier in this case.

The constraints are the conservation of mass for each element present; for k different elements, we'll have k constraints:
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where the conservation of mass for element J is equal to the number of moles of molecule i times the number of atoms of J contained in molecule i.   This is just a formal way of writing the stoichiometry calculations that we have been doing.

For example, consider a mixture of hydrogen and oxygen.  There are two constraints:

1. C1 = # of atoms of H, constant at any time

2. C2 = # of atoms of O, constant at any time

There are eight possible species present:

1. H2
2. O2
3. H2O

4. H

5. O

6. OH

7. H2O2
8. HO2
aJi is the number of atoms of J in the species i, and we can make a table, for example, for the hydrogen atom:

	aJi
	# of H Atoms in Species i
	Species i

	a11
	2
	H2

	a12
	0
	O2

	a13
	2
	H2O

	a14
	1
	H

	a15
	0
	O

	a16
	1
	OH

	a17
	2
	H2O2

	a18
	1
	HO2


We can make a similar table for the oxygen atom, a21=0, a21=2, etc.
Substitute in and the constraints look like this:
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The Lagrangian becomes:
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The derivative of the Lagrangian:
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We know that the partial of the entropy can be expressed in terms of the chemical potential:
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Substitute with k = 2:


[image: image70.wmf]r

i

a

T

a

T

n

L

J

Ji

J

i

J

r

i

Ji

J

i

i

,

,

2

,

1

0

2

1

2

1

1

K

=

=

Þ

=

+

-

=

¶

¶

å

å

å

=

=

=

l

m

l

m


[image: image1.wmf]E

D

C

E

B

A

E

D

C

E

B

A

n

n

n

n

n

n

+

+

Û

+

+


We can rearrange the above to get an expression for the mole fractions xi.  In general, our unknowns are k Lagrange multipliers, (k and the total number of moles n for a total of 

k + 1 unknowns, so we'll need k + 1 equations.  We'll have k constraint equations and one more: the mole fractions must sum to one.

There are several computer programs available that do combustion equilibrium calculations for simultaneous reactions using the Lagrange method. One is the NASA equilibrium program.  The other is STANJAN (the Lagrange multipliers are called element potentials), which we can use for class.
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