

Problem Solving Stages

Lesson VIII: Problem Solving module 37

Taxonomy of problems

Goals and operators

- When trying to solve a problem, the problem solver is trying to achieve a particular goal
- Operators refer to all possible actions / paths a problem solver can take at each point in time

Well-structured problems

- Clear path to a solution
- Goals and operators are known

Ill-structured problems

- Unclear path to a solution
- Neither the goal, nor the operators,
 sometimes even the problem itself is clear

The range of problems

Well-structured problems

- -4+5=?
- The ratio of blue socks to red socks is 5:1. How many socks do you have to pick blindfolded until you have at least one pair of the same color.
- Cannibals and missionaries

Ill-structured problems

 Connect the following three X X X points with four straight lines without moving the X X X pen from the paper. \$10 challenge: can you X X X do it with 3 straight lines (again, don't move the pen from the paper!)

Problem solving - an overview

- How do humans solve problems? What are common problem-solving problems?
 - Stages in the problems-solving process
 - Problem solving strategies / heuristics
 - What is insight? Incubation?
 - Problems in problem solving: Mental set, functional fixedness, transfer
 - Analogies, problem structures
 - What makes an expert problem solver?

Stages of the problems solving process

Stage model according to Sternberg

- Problem identification
- Problem definition and representation
- Strategy formulation / implementation
- Organization / interpretation of information
- Resource allocation
- Monitoring
- Evaluation

Problem definition and representation

The basic problem

- The ease of a solution often depends on
- ... how the problem is phrased (its surface structure)
- and what underlying assumptions are "imported"

Applied problems

- Most real problems are ill-defined
- Sometime not even the outcome measure can be agreed upon (e.g., policy making)
- Examples: how can we improve public education?

A sample problem

- Identify the rule behind each sequence. What is the next number?
- What is the rule behind each sequence?

Problem structure

Deep structure vs. surface structure of a problem

- The deep structure of a problem refers to the the abstract form of the problem
- The surface structure of a problem refers to the context and in which the problem is embedded

Isomorphic problems

- ... are two problems which only differ in their surface structure, but are based on an identical deep structures
- Example: An accountant can apply his business knowledge to all kinds of enterprises

Isomorphic problem structure

Banana vs. milk example

- GOAL: you want to cut off a quarter of a banana
- You first cut the banana in half
- Then you cut one of the two halves
- GOAL: you want to get a quarter of a gallon of milk and you only have two large, equal containers of which you don't know the volume
- First step: you fill each of the containers so that they hold the same amount
- Second step: you dump the content of one and distribute the remaining content between equally between the two containers

Accounting example

 An accountant can apply his business knowledge to all kinds of enterprises

Problem space (Newell & Simon, 1972) [Newell & Simon developed the General Problem Solver]

Most well-defined problems can be represented in a problem space

- Define the current state
- Define all possible transitions from one state to another state using the possible operators
- Define the goal state

Problem solving then consists of ...

- A path from the current state to the goal state
- The transitions indicate the operators to be used
- Computers can use algorithms to find possible paths by trying a huge number of paths

Humans often rely on heuristics

- heuristic: strategy that often works effectively

Problem solving strategies (efficiency depends on problem representation)

nΠ

Analysis and hierarchical problem solving

- Breaking the problem up into sub-problems
- Solve series of sub-problems until done

Heuristics

- Means-ends analysis: Reduce distance between current state and goal state
- Working forward, backward
- Generate and evaluate

Problem solving by analogy

- Try to find an analogous problem (isomorphic problem structure) that has been solved
- Transform the solution to new problem

Organization of information

Which piece of information is relevant?

 Depending on the state of the problem solving process different parts of the given information are relevant or have to be sought out

Reinterpretation of information

- Value / interpretation of information can change:
- Example: the series problem earlier in this module
- The woman who married 20 men (textbook)

Resource allocation and monitoring

Strategic decisions - metacognition

- How to allocate time? Energy? Money?
- Experts emphasize planning stage
- Novices embark on "local" planning and execution

Monitoring

- State of the problem solving progress
- Re-evaluation of problem solving approach
- Evaluation of distance from goal
- Estimate of problem completion

Evaluation

- Is this solution a valid / workable solution?
 - Checking solution against constraints
 - Reorganization of problem solving steps
 - Cleaning up
- Feeling accompanying insight -"ah-ha" experience
 - Insight: distinctive and sometimes seemingly sudden understanding of a problem or strategy to solve the problem. Often reconceptualizing a problem in a new way.
 - Pieces "fall into place" Evaluation feels redundant.

