Receptors and Neurotransmitters Continued

Psychology 472: Pharmacology of Psychoactive Drugs

Neurotransmitter Classes
- Acetylcholine (ACh)
- Catecholamines
 - Dopamine (DA)
 - Norepinephrine (NE)
- Serotonin (5-HT)
- Amino Acids
 - Glutamate = Excitatory
 - GABA = Inhibitory
- Peptide Neurotransmitters
 - e.g., Endorphins, Enkephalins

Functions
- Role in awakening systems in the brain
- Has a role in memory
- Decrease of ACh neurons is correlated with Alzheimer's and other diseases

Acetylcholine
- Acetylcholine (ACh) is the primary NT secreted by efferent CNS cells
- In the periphery: ACh neurons are found in:
 - Autonomic ganglia (e.g., the heart)
 - The neuromuscular junction (activation of muscle movement)
- In Brain: ACh neurons are found in:
 - Dorsolateral pons
 - Medial septum
 - Basal forebrain
 - ACh release in brain results in facilitatory effects

ACh Pathways
- Septal nucleus and nucleus basalis
 - Projects to forebrain.
- Midbrain
 - Projects to reticular formation, pons, cerebellum, and cranial nerve nuclei.
Cholinergic System

Acetyl-CoA
(in mitochondria, involved in Krebs cycle) + Choline (from diet)

ACh Receptors
- Two Types
- Nicotinic receptors are found in skeletal muscle (ionotropic effect)
 - Agonists: ACh, nicotine
 - Antagonists: d-tubocurarine and curare
- Muscarinic receptors are found in heart and smooth muscle (metabotropic effects)
 - Agonists: ACh, muscarine
 - Antagonists: Atropine and scopolamine

Nicotinic Receptor
- Receptor and ion channel are one unit
- ACh binds to alpha subunit
- Beta and Delta subunits are concerned with regulatory functioning

Muscarinic Receptors
- Uses a GP second messenger system
 - Ach
 - Muscarinic Ach Receptor
 - Gp
 - PLC
 - IP-3
 - DAG
 - Ca Release
 - PKC

If you put a phosphate group on Beta or Delta subunits – causes endocytosis. Receptor enters post synaptic element and is destroyed – Decreases sensitivity
AChE Inhibitors
- Irreversible
 - Often toxic
 - Include pesticides and nerves gases
- Reversible
 - Cognitive enhancers
 - Treating Alzheimer's

Amino Acid Transmitters
- Synthesis
 - Glutamine
 - Glutaminase
 - Glutamate = Excitatory
 - GABA = Inhibitory (more than half the synapses in the brain)

GABA
- Is synthesized from glutamic acid
- Induces IPSPs
- Acts via 2 receptors
 - \(\text{GABA}_A \): Ionotropic receptor (controls a chloride channel)
 - \(\text{GABA}_A \) receptors contain 5 distinct binding sites
 - GABA site
 - Benzo diazepine site
 - Barbiturates
 - Steroid binding site
 - Picrotoxin binding site

Gaba Cycle
- Metabolized by GABA-transaminase (GABA-T)
- Termination
 - reuptake with transporters on neuron or glial cells
GABA
- Activates a metabotropic receptor (controls a K⁺ channel)
- Formed by subunits (GABA-B1 [has 2 forms] and GABA-B2).

Amino Acids
- Drugs
 - Glutamate
 - PCP/ketamine (antagonists)
 - GABA
 - Sedative-hypnotics – tranquilizers, alcohol...
 - (agonists)

Glutamate
- Comes from metabolic pathway (Krebs cycle) or from glutamine via glutaminase.
- Binds to several receptor types.
 - NMDA, kainate, AMPA
 - NMDA mediated by glutamate and glycine-serine.
 - NMDA requires membrane depolarization by kainate or AMPA.
 - NMDA involved in memory formation.

Disorders
- Glutamate
 - Epilepsy / seizure
 - Dementias?
- GABA
 - Epilepsy / seizure
Biogenic Amine Transmitters

Catecholamine Synthesis

Dopamine
- Is used by several neural systems
 - Nigrostriatal system
 - Projects from the substantia nigra to the caudate nucleus and putamen
 - Mesolimbic system
 - Projects from ventral tegmental area to the limbic system (including the nucleus accumbens, amygdala, and hippocampus)
 - Mesocortical system projects from the ventral tegmental area to the cortex

Dopamine receptors are metabotropic
- D1 receptors are postsynaptic, whereas D2 receptors are pre- and postsynaptic
Receptors

- Dopamine
 - Two families: D1 and D2
 - DA and NE do not directly activate ion channels, but trigger sequence of chemical events.

Dopamine Pathways

Norepinephrine

- Norepinephrine is synthesized from dopamine within vesicles
- The locus coeruleus gives rise to NE fiber systems
 - NE is secreted from varicosities along fibers
 - NE interacts with four receptor types in brain
 - α-adrenergic (subtypes 1 and 2)
 - β-adrenergic (subtypes 1 and 2)
 - Adrenergic receptors are metabotropic

Serotonin Synthesis

PCPA inhibits TH
Serotonin
- Synthesis
 - Tryptophan
- Receptors
 - Ionotropic
 - 5-HT₃
 - G protein-coupled
 - 5-HT₁A, 5-HT₂, 5-HT₄
- Pathways
 - Largely parallel
 - DA

(5-HT) cells are mostly located in the gut (98%) with only 2% of serotonin cells in brain
- Serotonin cell bodies are located in brainstem raphe nuclei and project to cortex
- Serotonin systems:
 - D system originates in the dorsal raphe nucleus but does not form synapses (5-HT as a neuromodulator)
 - M system originates from the median raphe nucleus and these varicosities form synapses

Serotonin: Release and Termination
- Serotonin release:
 - 8-OHDPAT is an autoreceptor agonist that reduces 5-HT release
 - No selective release blocker
 - Fenfluramine is a 5-HT releasing drug
- Serotonin termination:
 - Reuptake is blocked by fluoxetine (elevates 5-HT)
 - Degradation: MAO converts serotonin to 5-HIAA

Glutamate
- Glutamate (glutamic acid) is an excitatory neurotransmitter
- Glutamate interacts with four receptor types
 - NMDA receptor: controls a CA²⁺ channel
 - Activation by glutamine requires glycine binding and displacement of magnesium ions
 - AMPA receptor: controls sodium channels
 - Kainate receptor: controls sodium channels
 - Metabotropic glutamate receptor
Peptides

- Consist of 2 or more amino acids
- Are synthesized in the soma and transported to the presynaptic element in vesicles
- Are released from all parts of the presynaptic element
- After release are enzymatically degraded (no reuptake)
- Peptides can be co-released with other NTs
 - Serves as neuromodulators

Peptides

- More than 100 types
- Are small proteins
 - Have 30 - 40 amino acids
- Are critical for fine tuning the NS

Conclusions

- Lots of different types
- Lots of different functions
- Impact multiple brain systems
- Important to have a general idea about what they do and the systems they impact