Effects of Ethanol on Neurons and Neuronal Structures

Listen to the audio lecture while viewing these slides

Psychology 472: Pharmacology of Psychoactive Drugs

Bi-Phasic Effects

- At low doses, (<1 drink)
 - Get some stimulation in neurons
- Higher doses (>1 drink)
 - Alters neuronal membrane (Lipid Bilayer)

Results
- Decreased amounts of Na that enters the axon
- Decreased height of the action potential
- Other consequences

The Action Potential

Result

- Alters Ca influx
 - Decreases the amount of NT that is released
- Decreases transmission speed of all neurons
 - Slows down stimulatory neurons

Behavioral Bi-Phasic Effects

- At low levels (<.05 BAC)
 - Alcohol causes you to feel good, makes you euphoric, loosens inhibitions etc.
 - Usually occurs on the ascending portion of the BAC curve
- Higher levels (> .05 BAC)
 - Euphoric feelings go away
 - Feel depressed
 - Descending portion of the BAC curve

Alters the Lipid Bilayer

The Alcohol Curve

- Decreases the amount of NT that is released
- Decreases transmission speed of all neurons
 - Slows down stimulatory neurons
Reason for the Changes
- Lower levels
 - Get increased levels of Dopamine in MFB
- Higher levels
 - Begin to sedate the brain, levels of dopamine decrease. Etc.

Effects on Receptors
- GABA
- NDMA
- Glutamate
- Opiate

GABA A Receptor
- Is an Axoaxonic receptor
 - Binds on presynaptic elements of stimulatory neurons
 - Designed to shut down stimulatory neurons
- Normally needs lots of GABA to work
 - High Affinity State

GABA Receptor
- Has Many Binding Sites
 - GABA site
 - Site for GABA to bind
 - BZ site
 - Site where BZ (α1,α2,α3,α5) and Alcohol (α4,α6) binds
 - Many types (some more sedative, others more anxiolytic)
 - Barbiturate site
 - Site where Barbiturates bind
 - Picrotoxin
 - Blocks effects of Barbiturates
 - Neuroactive steroid site

Alcohol
- Alters GABA Receptors
 - Binds on the BZ site (α4,α6)
 - Changes affinity for GABA from High to Low
 - Increases the amount of Cl influx into most stimulatory neurons
 - Further decreases the amount of Ca influx
 - Decreases the amount of NT
NDMA Receptor
N-methyl D-aspartate
- Is a specific type of ionotropic glutamate receptor
- Is important for synaptic plasticity and memory
- Requires both glutamate or aspartate and glycine
- When activated, lets Ca into the cell

Alcohol and NDMA Receptors
- Acts as an antagonist
- Inhibits the function of NDMA receptors
- Decreases the responsiveness of NDMA receptors to glutamate
- Have enhanced stimulation when the person withdraws from alcohol
 - Can get agitation, have epileptiform seizures, etc.

Opiate Receptors
- Alcohol triggers release of endogenous opiates (β-endorphin)
 - Causes a release of dopamine in MFB
 - Makes you feel good
- Use antagonists to reduce craving
 - Naltrexone

Serotonin Receptors
- Serotonin receptors
 - Alcohol use increases serotoninergic activity.
 - Increases secretion of dopamine from nucleus accumbens.
 - Makes you feel good
- SSRIs
 - Are effective in reducing drinking in lower-risk alcohol males.

Cannabinoid Receptors
- Chronic alcohol use stimulates formation of endogenous cannabinoid transmitter *anandamide* (an-anda-mid)
 - Leads to down regulation of cannabinoid receptors, disinhibiting nucleus accumbens.
- Cessation of drinking
 - Get hyperactive endocannabinoid reaction
 - Results in alcohol craving

Summary
- Affects the entire neuron
 - Alcohol decreases transmission speed
 - Alcohol decreases NT release
 - Alcohol increases Cl in post synaptic elements
- Shuts down structures that inhibit neurons of medial forebrain bundle
 - Get more firing in MFB
 - Feel good
Withdrawal Management

- Benzodiazepines
 - e.g., Chlordiazepoxide (Librium), Diazepam (Valium)
 - Increase GABA activity.
 - Decreases withdrawal symptoms; prevent seizures and DTs.
 - Long-acting, prevent withdrawal symptoms (either maintained or slowly withdrawn), allowing person to function.
 - Drawbacks: sedation, psychomotor deficits, additive interactions with alcohol, abuse and dependence liabilities.

Anticonvulsant Mood Stabilizers

- Fewer limitations than benzodiazepines
- Older anticonvulsants effective, but have side effects (e.g., liver and pancreatic problems).
 - e.g., Carbamazepine (Tegretol), Valproic Acid (Depakote)
- Newer anticonvulsants are less toxic and have significant potential.
 - e.g., Gabapentin (Neurontin), Oxcarbazepine (Trileptal)

Acamprosate

- Acamprosate (Campral)
 - First pharmacological agent designed to maintain abstinence in alcoholics after detoxification.
 - Both GABA-agonistic and NMDA-inhibitory, similar to ethanol.
 - Comparably effective to Naltrexone; combination of both drugs may be additively effective.

Dopaminergic Drugs

- Bupropion (Wellbutrin)
 - Works on both positive reward and withdrawal
 - Seems to involve dopaminergic reward system.

Conclusions

- Alcohol has many impacts on Neurons
- Creates lots of problems
- Has lots of implications for pharmacologic interventions