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Chapter 2 Slepian's Principle  

§ 1. The Bandwidth Paradox   

At the 1974 IEEE
1
 International Symposium on Information Theory, mathematician David Slepian 

opened his Shannon Lecture
2
 with the words  

 Are signals really bandlimited? They seem to be, and yet they seem not to be.  

 On the one hand, a pair of solid copper wires will not propagate electromagnetic waves at optical 

frequencies and so the signals I receive over such a pair must be bandlimited. . . . It would seem, 

then, that signals must be bandlimited.  

 On the other hand, however, signals of limited bandwidth W are finite Fourier transforms,  

    𝑠(𝑡) = ∫ 𝑒2𝜋𝑖𝑓𝑡𝑆(𝑓)𝑑𝑓
𝑊

−𝑊
  

and irrefutable mathematical arguments show them to be extremely smooth. They possess 

derivatives of all orders. Indeed, such integrals are entire functions of t, completely predictable 

from any little piece, and they cannot vanish on any t interval unless they vanish everywhere. Such 

signals cannot start or stop, but must go on forever. Surely real signals start and stop, and so they 

cannot be bandlimited!  

 Thus we have a dilemma: to assume that real signals must go on forever in time (a consequence 

of bandlimitedness) seems just as unreasonable as to assume that real signals have energy at 

arbitrarily high frequencies (no bandlimitation). Yet one of these alternatives must hold if we are 

to avoid mathematical contradiction, for either signals are bandlimited or they are not: there is no 

other choice. [Slepian (1976)]  

This is the Bandwidth Paradox.   

A signal is any physical phenomenon exhibiting variations (usually in time) that is said to carry 

information. When you speak to someone, variations in air pressure carry the sound from your mouth to 

the ear of the other person and these variations constitute an audible signal carrying information from you 

to the other person. Frequency, represented by the variable f in the equation above, is the rate of repetition 

of a regular event. For example, a violin string vibrating 1000 times per second is said to have a 

frequency of 1 kHz (1000 cycles per second). In 1807 the French mathematician and physicist Joseph 

Fourier showed that more complicated regular events can be broken down into a series of frequencies, 

e.g., 1 kHz, 2 kHz, 3 kHz, etc., and he claimed that any signal can be decomposed into this form
3
. Band-

width is simply the range of frequencies present in the Fourier representation of a signal. Fourier gave no 

proof for his generalized claim but later mathematicians were able to prove it was true subject to certain 

mathematical conditions. Today students of electrical engineering devote multiple semesters of study to 

Fourier analysis.  

A great deal of the work performed by electrical engineers consists of the generation, processing, and 

                                                           
1
 The Institute of Electrical & Electronics Engineers. 

2
 The Shannon Lecture is delivered by the IEEE Information Theory Society's winner of the prestigious Claude E. 

Shannon Award for consistent and profound contributions to the field of information theory. This award is the 

Society's equivalent of the Nobel Prize. Slepian was the first person to win the Claude E Shannon Award (other than 

Claude Shannon himself). His Shannon Lecture was regarded as so significant that it was reprinted in the IEEE's 

flagship journal, Proceedings of the IEEE, in 1976.  
3
 Primitive cases of what eventually came to be called Fourier analysis were known as far back as ancient Babylon, 

where it was used to compute tables of astronomical positions. French astronomer Alexis Clairaut used a version of 

it in 1754 to compute a planetary orbit. Ptolemaic astronomers used a related method to explain retrograde motions 

of the five planets known to their science.  
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transmission of signals. Television and radio are two examples of many kinds of commercial electronic 

products where the transmission of information from one place to another is the central purpose of the 

device. Most of the IEEE audience members at Slepian's 1974 lecture were people professionally 

involved in the engineering of communication devices and systems but the bandwidth paradox also arises 

in other quantitative sciences such as physics. Oddly enough, this paradox is seldom mentioned in college 

courses taken by science and engineering students. If mentioned at all, it is usually presented to graduate 

students; but a few especially bright undergraduate students occasionally discover it for themselves – an 

event that has been known to embarrass their teachers from time to time when the student asks one of 

them about it. Perhaps one factor in the stir Slepian's lecture produced had to do with many members of 

his audience being surprised to learn of it and none of them ever having thought of how to resolve it.  

Slepian's solution of the bandwidth paradox is obtained by a shift in "how one looks at the world"; in 

particular, it adopts an epistemology-centered view. Out of this shift comes an important principle I am 

calling Slepian's Principle. Slepian said,  

 My starting point is to recall to you that each of the quantitative physical sciences – such as 

physics, chemistry, and most branches of engineering – is comprised of an amalgam of two 

distinctly different components. That these two facets of each science are indeed distinct from one 

another, that they are made of totally different stuff, is rarely mentioned and certainly not 

emphasized in the traditional college training of the engineer or scientist. Separate concepts from 

the two components are continually confused. In fact, we even lack a convenient language for 

keeping them straight in our thinking. I shall call the two parts Facet A and Facet B.  

 Facet A consists of observations on, and manipulations of, the "real world." . . . For the electrical 

engineer this real world contains oscilloscopes and wires and voltmeters and coils and transistors 

and thousands of other tangible devices. These are fabricated, interconnected, energized, and 

studied with other real instruments. Numbers describing the state of this real world are derived 

from reading meters, thermometers, counters, and dial settings. They are recorded in notebooks as 

rational real numbers. (No other kind of number seems to be directly obtained in this real world.)  

 Facet B is something else again. It is a mathematical model and the means for operating with the 

model. It consists of pencils and papers and symbols and rules for manipulating the symbols. It 

also consists of the minds of the men and women who invent and interpret the rules and 

manipulate the symbols, for without the seeming consistency of their thinking processes there 

would be no single model to consider. When numerical values are given to some of the symbols, 

the rules prescribe numerical values for other symbols of the model. [ibid.]  

Slepian's words contain and carry an echo of Kant across the centuries:  

There is no doubt whatever that all our [empirical] knowledge begins with experience; for how 

else should the faculty of knowledge be awakened into exercise if not through objects that move 

our senses and in part themselves bring about representations, in part bring the activity of our 

understanding into movement to compare these, to connect or separate them, and thus to work up 

the raw stuff of sensuous impressions into a cognition of objects that is called experience? [Kant 

(1787) B: 1]  

Slepian's Facet A is the world of tangible objects of sensible experience. On the other hand, Facet B is a 

mental world of abstract concepts and ideas of supersensible experience, and this world is where all 

mathematics resides. Facet A can be called the physical world; Facet B can be called the mathematical 

world. Slepian said,  

Our mathematical models are full of concepts, operations, and symbols that have no counterpart in 

Facet A. Take the very fundamental notion of a real number, for instance. In Facet B, certain 

symbols take numerical values that are supposed to correspond to the readings of instruments in 

Facet A. Almost always in Facet B these numerical values are elements of the real-number 



Chapter 2: Slepian's Principle  Richard B. Wells 

© 2020 

 

27 

 

continuum, the rationals and irrationals. This latter sort of number seems to have no counterpart 

in Facet A. In Facet B, irrational numbers are defined by limiting operations or Dedekind cuts – 

mental exercises that with some effort and practice we can be trained to "understand" and agree 

upon. After years of experience with them, we theoreticians find them very "real," but they do not 

seem to belong to the real world of Facet A. The direct result of every instrument reading in the 

laboratory is a finite string of decimal digits – usually fewer than six – and a small integer 

indicating the exponent of some power of 10 to be used as a factor. Irrationals just cannot result 

directly from real measurements [Slepian (1976)].  

Neither, for that matter, can rational numbers with an unlimited number of non-zero digits. This brings 

Slepian to another important observation:  

 Now there are several ways in which we can handle this fundamental lack of correspondence 

between symbol values in Facet B and measurements in Facet A. . . . [The simplest is] the scheme 

adopted and known to you all. We admit the real-line continuum into Facet B and we impose yet 

another abstraction – continuity. In the end, if the model says the voltage is π, we are pleased if the 

meter in Facet A reads 3.1417. We work with the abstract continuum in Facet B, and we round off 

to make the correspondence with Facet A.  

 Mathematical continuity deserves a few words. It is another concept with no counterpart in the 

real world. It makes no sense at all to ask whether in Facet A the position of the voltmeter needle 

is a continuous function of time. Observing the position of the needle at millisecond or micro-

second or even picosecond intervals comes no closer to answering the question than does 

measurement daily or annually. Yet continuity is a vital concept for Facet B. By invoking it, by 

demanding continuous solutions of the equations of our models, we make the parts of our model 

that correspond to measurements in Facet A insensitive to small changes in the parts of the model 

that do not correspond to anything in Facet A. . . . There are certain constructs in our models (such 

as the first few significant digits of some numerical variable) to which we attach physical 

significance. That is to say, we wish them to agree quantitatively with certain measureable 

quantities in a real-world experiment. Let us call these the principal quantities of Facet B. Other 

parts of our models have no direct meaningful counterparts in Facet A but are mathematical 

abstractions introduced into Facet B to make a tractable model. We call these secondary 

constructs or secondary quantities. . . . It is my contention, however, that a necessary and 

important condition for a model to be useful in science is that the principal quantities of the model 

be insensitive to small changes in the secondary quantities. Most of us would treat with great 

suspicion a model that predicts stable flight for an airplane if some parameter is irrational but 

predicts disaster if that parameter is some nearby rational number. Few of us would board a plane 

designed from such a model. [ibid.]  

Slepian's contention – the principal quantities of a model must be made insensitive to small changes in 

secondary quantities – is Slepian's Principle. He used this principle in the remainder of his lecture to 

explain the Bandwidth Paradox. This explanation is somewhat lengthy and involves mathematical 

arguments that require some significant training in order to be understood, but his final conclusion can be 

explained fairly simply. If two Facet B signals, s1(t) and s2(t), have energies that cannot be distinguished 

by measuring instruments in Facet A, then the signals must be considered "the same." By this he means 

that if s1 is time-unlimited in Facet B, s2 in Facet B is a time-limited truncation of s1, and the energies of 

these two cannot be distinguished through measurements in Facet A, then they are from a practical point 

of view indistinguishable and to be regarded in Facet A as both time and bandwidth limited. As he put it,  

A consequence of these definitions is that all signals of finite energy are both bandlimited to some 

finite bandwidth W and time limited to some finite duration T. [ibid.]  

Slepian also pointed out that when measuring instruments become available that permit measurements 

detailed enough to be able to distinguish two signals that were previously indistinguishable then the Facet 

B constructs of bandwidth and time duration could be altered. Put another way, measurement instruments 
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can be used to extend the range of our senses and convert what were supersensible objects of Facet B into 

sensible objects of Facet A.  

2. Slepian Dimensioning     

Slepian's principle turns out to be of fundamental pertinence to other developments in mathematics and 

engineering that were first introduced before his 1974 lecture and have been undergoing continued 

development since then. One of these in pure mathematics is called "non-standard analysis" [Robinson 

(1996)]; another is called "set membership theory" or SMT [Combettes (1993)], [Deller et al. (1993)].  

Robinson introduced the idea of non-standard analysis in a 1960 Princeton seminar. SMT was first 

introduced in 1968 by control system engineers as a method for dealing with particularly nasty real world 

engineering problems [Schweppe (1968)], [Witsenhausen (1968)]. Since then it has also been applied to 

technical problems in communication system theory [Wells (1996)] and digital magnetic data storage 

[Wells (1995)], [McCarthy & Wells (1997)]. Slepian's idea of "indistinguishability" is central to all of 

these.  

There are also other scholarly fields where Slepian's Principle lies implicitly in their theories. One 

example is the theory of quantum electrodynamics, the theory for which Feynman, Schwinger, and 

Tomonaga received their Nobel Prizes. Feynman unintentionally gave us a hint of this [Feynman (1985), 

pp. 124-129]. The hint came while he was discussing the measured rest mass of an electron (m), the 

measured charge on an electron (e), the "rest mass of an ideal electron" (n), and the "charge on an ideal 

electron" (j). The first two (m and e) can be measured experimentally; the latter two (n and j) have to be 

calculated theoretically and this calculation depends on the assumed distance between the electron and the 

point in space where the calculation is made. The numerical values of n and j depend on this distance, and 

this distance is many orders of magnitude smaller than anything we can measure. Feynman said,  

Schwinger, Tomonaga, and I independently invented ways to make definite calculations to 

confirm that [the theory] is true (we got prizes for that). People could finally calculate with the 

theory of quantum electrodynamics!  

 So it appears that the only things that depend on the small distances between coupling points are 

the values for n and j – theoretical numbers that are not directly observed anyway; everything 

else, which can be observed, seems not to be affected.  

 The shell game that we play to find n and j is technically called "renormalization." [Feynman 

(1985), pg. 128]  

In other words, n and j are what Slepian called secondary quantities of Facet B.  

To facilitate an understanding of Slepian's Principle it is useful to introduce an epistemological idea we 

shall call "Slepian dimensioning." This idea derives directly from Kant's Critical theory of concepts
4
. A 

concept is one type of mental representation, and representation is a logically primitive idea in Critical 

epistemology because, as Kant put it,  

cognition always presupposes representation. And this latter cannot be explained at all. For we 

would always have to explain what is representation? by means of yet another representation. 

[Kant (1800) 9: 34]  

What he means by this is that we cannot provide any ontological real explanation (Realerklärung) for 

representation in objective terms. Like other primitives in Kant's epistemology, the only real meaning for 

the term "representation" is a practical one:  

                                                           
4
 The Critical theory is presented in Wells (2006) and Wells (2009). The reader is referred to these sources for its 

explanation.  
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Representation is mental (internal) determination where a thing is being referred to as if it were 

separable from myself. . . . But I call it related if its quality is conformable to the quality of outer 

things, or if it gives shape to external things-in-the-world. [Kant (1753-59) 16: 76-77]  

On the practical level, representation is a mental act human beings carry out; thus this explanation is a 

practical explanation, not an ontological one, and obtains its practical validity from the fact that we know 

human beings are capable of doing what Kant describes here. Representation is necessary for the 

possibility of human knowledge as we understand the nature of what it is to be a human being. Kant also 

tells us,  

All our knowledge has a twofold relationship, first to a relationship to the Object, second a 

relationship to the subject
5
. In the first consideration, it refers to representation, in the latter to 

consciousness, the universal condition of all cognition in general. (In reality, consciousness is a 

representation that another representation is in me.) [Kant (1800) 9: 33]  

Thinking is cognition
 6
 through concepts, and this brings us around to the idea of a "concept." A concept 

is the representation of a rule
 7

 constructed (mentally) by a human being through which he is able to 

consciously re-present to himself an appearance of an object. We can call the act of making a concept an 

act of judgment out of which experience is produced. Broadly speaking, an act of judgment is either a 

judgment of perception (which is a conscious representation with merely subjective validity, i.e., validity 

only for the person making the judgment; its representation is called an "intuition") or a judgment of 

experience (in which case the object referred to in the representation is objectively valid, i.e., valid for 

every person's experience; its representation is called a "concept").  

Through acts of thinking and judgment, human beings gradually structure their knowledge of objects 

through a complex and hierarchical organization of concepts that Kant called the manifold of concepts 

[Wells (2006; 2009; 2011; 2012)]. The act of constructing this structure is what Critical epistemology 

calls understanding. Kant tells us,  

The logical acts of understanding, through which concepts are begat as to their forms, are:  

1. Comparation of representations among one another in relationship to unity of consciousness; 

2. Reflexion, i.e. reconsideration as to how various representations can be comprehended in one 

consciousness; and finally 

3. Abstraction or separation of everything else in which the given representations differ. [Kant 

(1800) 9: 94]
 8
  

During the process of thinking concepts can be synthetically combined to produce additional concepts 

without the constituent concepts losing their original matters (sensations) and forms of representation. 

The act of abstraction then produces a concept Kant called a "mark" of the two or more concepts going 

into its synthesis. The "mark" concept contains all that is common to them and nothing that differs 

between them. The mark is said to coordinate the concepts standing under it and so is also called a 

coordinate concept. Figure 1A illustrates this idea. Concept M is said to be "contained in" concepts A and 

B, while concepts A and B are said to be "contained under" concept M. Because of the act of abstraction, 

concept M contains less in itself than either concept standing under it.  

                                                           
5
 By "subject" Kant means the human being said to have knowledge.  

6
 I use the word "cognition" to mean the act or process of knowing including both awareness and judgment.  

7
 A rule is an assertion made under a general condition. A concept asserts reproduction of a particular representation 

of the appearance of an object.  
8
 In the language of modern mathematics, the act of Comparation is the synthesis of what is called an equivalence 

structure. The act of Reflexion is the construction of what is called a congruence structure. For the mathematically 

formal definitions of these terms see Preparata and Yeh (1974), pp. 45 and 136.  
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Figure 1: Coordination of concepts in the manifold of concepts. (A) Concepts A and B combined to produce a 

higher concept M called a "mark" of A and B; (B) Multiple marks M1 through M4 of a concept A. 

The marks of a concept generally depend on what other concepts it is synthetically combined with 

because differences represented in these other concepts determine what the act of abstraction separates 

out in representing the mark. A concept A therefore can have multiple marks (as illustrated in figure 1B) 

as a result of its being combined with various other concepts. Each coordinate mark in this figure has at 

least one other connection (not shown) to another concept because coordinate concepts always involve at 

least two lower concepts. It is said to "under stand" the concepts it coordinates, hence we call this 

synthetic processing of concepts "understanding."  

A mark, in its turn, can also be synthetically combined with other concepts to produce a "higher" mark-

of-a-mark that under stands it. At each successively higher level, marks contain less information than the 

concepts standing under it. Because of differences in the sensational content (matter) in a mark, the 

process of understanding, in producing successively higher concepts, eventually reaches a point where 

abstraction has removed all sensational matter and retains only rules of pure form. This is illustrated in 

figure 2.  

However, the object of a concept containing no sensation information cannot be an object of sense. For 

this reason, that object is said to be "supersensible" and is not an object of any possible human 

experience. The concept of such an object is called an idea. The existence of the object of an idea can be 

inferred with objective validity from the still-sensible objects of the concepts standing immediately under 

it, but the object itself cannot be experienced because its idea contains no sensations. Kant called such an 

object a noumenon. In contrast, an object of a concept in which matters of sensation representation are 

still contained is called a phenomenon. Only phenomena can be objects of possible experience.  

When understanding has progressed so far to first produce an idea (a concept devoid of sensational 

content), the noumenon it represents is said to "stand at the horizon of possible experience" (figure 2). 

The object can properly be called "a thing-as-we-know-it." For example, in Newtonian physics the 

phenomenon of gravity is understood through gravity's various effects but Newton was unable to find a 

cause of gravity. Its effects are phenomena but the unknown cause was a noumenon. Gravity as a thing-

as-we-know-it is known only by its effects; where none of these effects can be found we say "no gravity 

is presented." An unknown cause of a known effect is always a noumenon. In Kant's Critical metaphysic, 

noumena at the horizon of possible experience mark the end of objectively valid Critical ontology.  

However, the mere fact that the idea of a noumenon has reached this horizon does not put a stop to the 

process of thinking. While all ideas lack sensational content, they still contain representations of form, 

and forms can differ between ideas. Therefore, thinking can continue to produce higher ideas of noumena.  
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Figure 2: Illustration of the horizon of possible experience. I translate the German word Objekt as Object. 

Figure 2 illustrates this continued progression of thinking. An idea produced by making abstraction of 

other ideas has for its object of representation a different kind of noumenon we can call "a thing-as-we-

cannot-know it" or "a thing-in-itself" (in German, a Ding an sich selbst) because this object can never be 

an object of experience. Such an object has epistemological significance for human understanding, but it 

can have no ontological significance whatsoever. If we mistake such an object for being ontologically 

significant we subject ourselves to what Kant called a "transcendental illusion."  

But this is not to say that all noumena beyond the horizon of possible experience are insignificant. All 

objects of pure mathematics are noumena beyond the horizon of possible experience but these objects are 

nonetheless epistemologically significant for the practice of science and mathematics. There is no 

illusional "pi in the sky" (as Davis & Hersh humorously put it in chapter 1), but where would math and 

science be without the idea of the number π ? Where, indeed, would they be without the idea of "real 

numbers"? Slepian noted,  

We could build a mathematical model in which only a finite number of numbers can occur, say 

those with 10 significant digits and one of a few hundred exponents. Differential equations would 

be replaced by difference equations, and complicated boundary conditions and rules would have to 

be added to treat the roundoff problem at every stage. This model would be exceedingly complex. 

[Slepian (1976)]  

But because the idea of a "number" is itself an idea (and its object a noumenon), a philosopher might say 

even this idea of Slepian's is problematic.  

In point of fact, every scientific theory (including the science of mathematics) is a doctrine of ideas. The 

challenge for scientists is not so much the challenge of coming up with ideas but, rather, the challenge of 

coming up with ideas that work, i.e., that accurately and reliably describe natural behaviors. Feynman 

said of scientific theorizing,  
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Figure 3: Slepian dimensioning of concepts into a "physical dimension" (concepts of phenomena) and an 

"intelligible dimension" (ideas of noumena). From ideas at the horizon of possible experience we get our principal 

quantities of Facet B. Other mathematical concepts of secondary quantities of Facet B represent the abstract objects 

of pure mathematics. 

What we need is imagination, but imagination in a terrible strait-jacket. We have to find a new 

view of that world that has to agree with everything that is known, but disagrees in its predictions 

somewhere, otherwise it is not interesting. And in that disagreement it must agree with nature. If 

you can find any other view of the world which agrees over the entire range where things have 

already been observed, but disagrees somewhere else, you have made a great discovery. [Feynman 

(1965), pg. 171]  

This lengthy prologue brings us around at last to the idea of Slepian dimensioning (figure 3). Slepian 

makes a logical division of concepts (and their objects) into those whose contexts which lie in a physical 

dimension (the "real world" or "world of phenomena") and those whose contexts lie in an intelligible 

dimension (the "mathematical world" or "world of noumena"). In Critical epistemology the context of a 

concept is extremely important. Context is what delimits the applicable scope of a concept insofar as this 

concept can be applied with objective validity.  

This is as much as saying context determines the nature of the reality of a concept's object. In Critical 

epistemology, every object is real (objectively valid) in some contexts, it is unreal (lacks objective 

validity) in others, and non-real (inapplicable) in still others. For example, "the ghost of Hamlet's father" 

is real in the context of being a character in Shakespeare's play Hamlet; it is unreal in the context of being 

a spirit that actually haunts some castle in Denmark; and it is non-real (does not apply) in the context of 

the price of a barrel of oil. The epistemological significance of a concept is determined by one's 

understanding: those contexts where the object is real; those where it is unreal; and those where it is non-

real. The number pi, as an object, is real in the context of geometry; it is unreal in the context of 

Pythagorean number mysticism, i.e., "the nature of things is number" [Zeller (1980), pg. 35]; it is non-

real in the context of a game of soccer. For concepts of objects of Facet A, their contexts are generally 
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established by sensuous relationships with other phenomenal concepts. Every empirical perception 

contains sensations; for this reason Kant called phenomenal objects "the real of sensation" [Kant (1787) B 

207] because sensation is to be regarded as an effect on the perceiving person caused by an object [ibid., 

B: 34].  

But when pure noumena are represented by concepts of secondary quantities, which contain no matter 

of sensation, how can anyone say these objects are "objectively valid" or "real in a context"? Obviously, 

since these objects lie beyond the horizon of possible experience, no one can have any direct sensuous 

experience of them, and direct sensuous experience is what most people mean by "being real" or "having 

objective validity." Here it is important to distinguish between two kinds of objective validity recognized 

in Critical epistemology. These are "theoretical objective validity" and "practical objective validity."  

To understand what these mean, we must further examine combinations of concepts in the manifold of 

concepts. In particular, we must look at some structures within the manifold of concepts. Indeed, the idea 

of a "context" cannot be adequately understood without this further examination
9
. For this we need to 

look at three kinds of concept structures. Kant called these: the polysyllogism; the Classification; and the 

disjunctive inference of Reason.  

§3.  Polysyllogisms     

One reason present day logicians so badly misunderstand Kantian Logic is, in part, because Kant used 

technical terminology he took from the ontology-centered logics of his day
10

. He used the same words but 

he gave them different (epistemology-centered) meanings. He also seemed to regard the logics of his day 

as so trivially deducible from his Critical Logic that his logic lectures barely differentiate between them. 

A modern reader who has no or only a passing familiarity with Critique of Pure Reason cannot be blamed 

if he, too, fails to notice that Kant's Critical Logic is something quite different from "traditional" logic.  

Let us begin with those concept structures Kant called polysyllogisms [Wells (2011)]. The concept 

diagrams we have seen thus far explicitly illustrate nothing beyond simple connections of coordination 

between higher and lower concepts in the manifold of concepts. While connections of coordination are 

vital for thinking basic propositions, a little reflection on your part might soon convince you that this kind 

of concept connection is completely inadequate to explain the wondrous variety and complexity of your 

everyday thoughts. Even so simple a classroom example as  

All lions are big cats; 

All big cats are predators; 

All predators are carnivores; 

Therefore all lions are carnivores,  

cannot be captured by a simple chain of coordinated concepts (figure 4). To go from the first proposition 

in this example to the final conclusion requires multiple cycles of thinking in which the different 

propositions are seriated, e.g., lions  big cats  predators  carnivores. The conclusion cannot be 

reached without thinking a series connection running from carnivores all the way back to lions. But this 

kind of connection is not indicated by the diagram of a simple chain of coordinated concepts.  

                                                           
9
 That the concept of a "context" is an idea (contains no sensuous matter) becomes clear as soon as you understand 

that you have never had a direct sensuous experience with a thing called a "context." You do, of course, recognize 

your contexts in your process of thinking. Put rather simply, your context is the scope of what you are thinking 

about. But if thinking is cognition through concepts, what sort of concept represents a "context"? This is the sort of 

question we need the structures of polysyllogisms, Classifications, and disjunctive inferences in order to answer.  
10

 The education most students receive today on the subject of logic is so impoverished that most students are 

unaware that there have been and still are many different "kinds" or "schools" of logic. These different logics are 

discussed in Kneale & Kneale (1962). The most prevalent logics used in Kant's day were the Port Royal Logic 

[ibid., pp. 315-320] and the logic of Leibniz [ibid., pp. 320-336].  
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Figure 4: Illustration of a simple chain of coordinated concepts. HC denotes concepts that are higher than the 

subject concept S. LC denotes concepts that are lower than concept S.  

 

Figure 5: Illustration of the concept structures for prosyllogisms and episyllogisms. The colored ovals denote 

concepts that have been connected as a series. 

The construction of a combination of concepts in series is what Kant means by "polysyllogism." The 

structure resulting from this is itself a concept, but one within which the series connection is represented. 

Kant called this structuring a "series of composite inferences" of Reason [Kant (1800) 9: 134]. One might 

call a polysyllogism structure a "composite concept." Within it the simpler concepts of which it is 

composed are conserved and remain distinct. The making of this series can proceed in two possible ways. 

If it runs from the lowest concept successively to the highest concept in the series, it is called a 

prosyllogism. If it instead runs from the highest concept to the lowest one in the series, it is called an 

episyllogism. Figure 5 illustrates these two cases. (You should note that these definitions of prosyllogism 

and episyllogism are not the same as the definitions used in the doctrines of ontology-centered logics).  
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Figure 6: Multiple polysyllogism constructions within the manifold of concepts. A full polysyllogism is a 

structure containing both an episyllogism construct and a prosyllogism construct. Reasoning based upon a full 

polysyllogism can run in either direction, whereas reasoning through episyllogisms can run only from the higher to 

the lower concept, and that of a prosyllogism can run only from the lower to the higher concept. 

Because concepts within a polysyllogism are conserved and remain distinct, a concept can be reused in 

synthesizing many polysyllogisms. This is illustrated in figure 6, where the ovals again indicate poly-

syllogisms. For example, the concept labeled "8" in figure 6 is part of the full polysyllogism 11  10  

8, the episyllogism 8  6  3, and the prosyllogism 5  8. However, it does not participate in a series 1 

 5  8 nor in a series 8  6  2 because these series have not yet been synthesized (no single oval in 

the figure identifies either series). The thinking person has not yet made these inferences by means of his 

reasoning process; he simply "hasn't thought of them yet." There is a prosyllogism 1  5 and another one 

5  8, but these two composite concepts have not yet been synthesized as one series.  

The "1  5" and "5  8" example just given points to a subtle shortcoming in traditional logic doctrine. 

This doctrine deals solely with variables (e.g., "1", "5", "8") that are not related to objects. These variables 

have "truth values" assigned to them by the logician or mathematician but have in themselves no "real 

world" significance. Any significance assigned to them is assigned by the logician or mathematician or 

scientist, and this assignment necessarily requires some extra-logical concept be added to them from 

outside the domain of the formal logic discipline. The traditional logics are not "laws of thinking" as some 

people have proposed or assumed. They are what Aristotle originally said they were, i.e., methods  

by which we shall be able to reason from generally accepted opinions about any problem set 

before us and shall ourselves, when sustaining an argument, avoid saying anything self-

contradictory. [Aristotle (c. 350 BC) pg. 273]  

Aristotle tightly coupled his "science of deduction" to his system of metaphysics and by doing so 

excluded from it statements like "All griffins are fierce" that are fictitious or contrary to facts. The later 

Scholastics of the Middle Ages felt compelled to divorce "logic" from Aristotle's metaphysics because his 

metaphysics ran counter to Christian doctrine. By doing so, traditional logic became a methodology by 

which it was possible to make "true statements" about empirical absurdities. An example of this is 

provided by the following:  
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All horses are animals; 

Animals with wings are birds;  

The horses of Arabia have silver wings; 

Therefore, the horses of Arabia are birds.  

Lewis Carroll and other authors have had a great deal of fun at formal logic's expense over the years 

because of this divorce. For example, Mark Twain (Samuel Clemens) wrote,  

In the space of one hundred and seventy-six years the Lower Mississippi has shortened itself two 

hundred and forty-two miles. That is an average of a trifle over one mile and a third per year. 

Therefore, any calm person, who is not blind or idiotic, can see that in the Old Oölitic Silurian 

Period, just a million years ago next November, the Lower Mississippi River was upward of one 

million three hundred thousand miles long and stuck out over the Gulf of Mexico like a fishing 

rod. And by the same token any person can see that seven hundred and forty-two years from now 

the Lower Mississippi will be only a mile and three quarters long, and Cairo and New Orleans will 

have joined their streets together, and be plodding comfortably along under a single mayor and a 

mutual board of aldermen. There is something fascinating about science. One gets such 

wholesome returns of conjecture out of such a trifling investment of fact. [Twain (1883), pg. 88]  

Lest you think things like this are harmless, bear in mind that in recent decades some physicists have 

come to regard their mathematics as being in some way ontologically significant. Out of this have come 

seriously proposed untestable transcendental illusions such as "the existence of parallel universes."  

Formal logic does not describe how human beings think. Computers do not think even though their 

circuitry is designed by "logic designers" and despite claims sometimes made on behalf of so-called 

"artificial intelligence." Naturally, the medieval Scholastics recognized the vulnerabilities the divorce 

between logic and metaphysics produced, and they took mathematics-like measures to counter them. 

These include definitions specifying how such things as "truth" and "falsity" are to be regarded and by 

making distinctions between "empirical propositions" and "a priori propositions." Ambrose & Lazerowitz 

tell us,  

 We shall distinguish in the first place between a priori and empirical truth or falsity. A 

proposition is said to be true a priori if its truth can be ascertained by examination of the 

propositions alone or if it is deducible from propositions whose truth is so ascertained, and by 

examination of nothing else. [Ambrose & Lazerowitz (1948), pg. 17]  

 Empirical truths and falsities stand in sharp contrast to those which are a priori. A proposition is 

true, or false, empirically when its truth or its falsity is ascertainable not by inspection, but only by 

recourse to matters of fact, that is, by observation or by an experiment of some sort . . . Thus an 

empirical truth, sometimes called a "contingent" one, is determined by states of affairs in the 

world, so that if the states of affairs were otherwise, what is true would instead be false. By 

contrast, what is true or false a priori is in no sense contingent upon states of affairs. An a priori 

proposition is true, or false, regardless of what the world is like and of what happens in it. For this 

reason, a priori truths and falsities are characterized as "necessary" [ibid., pp. 17-18].  

This comes at the price of disconnecting formal logic from empirical science:  

 Now in logic we have no concern whatever with whether any empirical proposition is actually 

true or actually false. This follows from the fact that we deal only with the formal elements in 

propositions and not with their subject matter, except in the indirect sense of noting how formal 

concepts function in any such context. This is one reason why logic is said to be a nonempirical 

study. Another reason is that it does not concern itself with empirical propositions except as these 

are constituents of a priori propositions, especially those that are a priori true. Out of these latter 

the deductive system is constructed. [ibid., pg. 18]  
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In contrast, Kantian Logic is not divorced from Critical metaphysics and it remains concerned with 

empirical propositions as well as formal statements.  

There is a problem, though, that arises when we combine the idea of "a priori truths and falsity are 

characterized as 'necessary' " with the idea of divorcing logic from "empirical propositions." The issue 

centers on the question of what "necessity" means. Here, once again, we must turn to science for under-

standing what "necessity" is. The answer was revealed by Piaget's studies in 1983 of how children come 

to understand ideas as "possible" or as "necessary." He concluded,  

 In short, necessity does not emanate from objective facts, which are by their nature merely real 

and of variable generality and therefore subject to necessary laws to a greater or lesser extent. 

They only become necessary when integrated within deductive models constructed by the subject. 

The necessity of p can thus not be characterized only as the impossibility of not-p, since new 

possibilities can always emerge, but must be described in Leibniz's manner as the contradiction of 

not-p, and this relative to a specific, limited model. [Piaget (1983), vol. 2, pg. 136]  

If a person can only conclude something is "necessary" from the basis of a model, then "necessity" in 

logic cannot be divorced from empirical propositions because all deductive models have their bases in 

these.  

The "1  5" and "5  8" example above also brings out a second point that bears emphasizing. A 

concept is not "automatically" combined within polysyllogisms merely because a coordinating judgment 

connects it to a higher or a lower concept. A human being needs a practical reason to make an inference, 

and his reasons are motivated by psychological needs that thinking and reasoning satisfy [Wells (2016)]. 

This property of the human nature of thinking and reasoning has been empirically borne out in 

psychological studies [Piaget (1974)], [Piaget (1983)]. It was also noted by mathematician Henri 

Poincaré:  

 Great importance has been rightly attached to this process of [mathematical] "construction," and 

some claim to see in it the necessary and sufficient condition of the progress of the exact sciences. 

Necessary, no doubt, but not sufficient ! For a construction to be useful and not a mere waste of 

mental effort, for it to serve as a stepping stone to higher things, it must first of all possess a kind 

of unity enabling us to see something more than the juxtaposition of its elements. Or more 

accurately, there must be some advantage in considering the construction rather than the elements 

themselves. [Poincaré (1905), pg. 15]  

I make this point in order to caution readers against interpreting my diagrams from a too automaton-like 

point of view such as that implicit in the 20th century "metamathematics" of formalism as championed by 

David Hilbert and by the "Nicolas Bourbaki" school of mathematical philosophy [Davis & Hersch (1981), 

pp. 335-344].  

Polysyllogism structures provide one basic form of context. Their objective validity is at root practical, 

that is, rooted in motivated mental acts aimed at satisfying some purpose. However, there is another form 

of context equally important, and we look at this one next.  

§4.  Disjunctive Inferences and Classifications    

Seriation is only one form of context formation. Another form is what is called "Classification," and 

Classifications are made possible by the synthesis of what Kant called "disjunctive inferences of Reason" 

[Wells (2012)]. There is evidence of the development of both capacities very early in life before the onset 

of language ability in a child:  

We therefore come to our final hypothesis, that the origins of classification and seriation are to be 

found in the sensorimotor schemes as a whole (which includes perceptual schemes as integral 
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parts). Between the ages of 6-8 and 18-24 months, which is well before the acquisition of 

language, we find a number of behavior patterns which are suggestive of both classification and 

seriation. . . . The fact that we can observe various prototypes of classification and seriation at the 

sensorimotor and preverbal stage of development proves that the roots of these structures are 

independent of language. [Inhelder & Piaget (1964), pp. 13-14]  

Bearing in mind that concepts are mediate representations of Objects, and that the idea of classifying 

something already presupposes distinguishable multiple Objects, Classifications are more complicated 

structuring activities than seriations. Polysyllogism constructs are contained in them, and disjunctive 

inferences distinguish them. Figure 7 illustrates the structure of a Classification. Kant explains,  

The several given judgments of which the disjunctive judgment is composed make up its matter 

and are called the members of the disjunction or opposition. In the disjunction itself subsists the 

form of these judgments, that is, in the determination of the relationship of the various judgments 

as reciprocally exclusive of each other and complementary members of the whole sphere of the 

classified cognition [C]. [Kant (1800) 9: 106]  

The same manifold Object (the Object represented by C) can be subjected to multiple acts of 

Classification by which distinct multiple disjunctions (D) are placed under C. Multiple disjunctive 

inference structures under a concept C thereby establish multiple contexts in which C can be regarded. 

These divers disjunctive inferences are synthesized in separate acts of judgment and endow human 

reasoning with the enormous flexibility and creative capacity human beings are so clearly known to 

exhibit.  

There is much more that can be said about inferences of Reason but doing so would draw us away from 

the topics of mathematics and science and into more psychological matters of the phenomenon of mind. 

This is best left to other discussions, e.g. Wells (2011) and Wells (2012). The discussion given here suits 

the purpose at hand, namely clarifying the idea of what "context" means. With this, we can return to the 

question that prompted this brief tangent – namely, "how can Facet B concepts be objectively valid?"  

 

Figure 7: Manifold structure of a Classification. As a first step, concepts contained under concept C undergo 

polysyllogisms presenting new concepts (L1-L3 and L2-L4). Then the concept of a disjunctive inference (D) is 

formed, by which L1-L3 and L2-L4 are made "members of the disjunction." A transcendental disjunction has the 

property that Member 1 and Member 2 cannot both be presented in consciousness in the same intuition at the same 

moment in time. 
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§5.  The Condition of Epistemological Significance for Secondary Quantities     

Refer once again to figure 3 above, the diagram illustrating Slepian dimensioning. Secondary quantities 

are concepts that lie beyond the horizon of possible human experience. At no point are they connected by 

judgments of actual experience to concepts of objects belonging to Facet A. This lack of connection is 

what distinguishes a secondary quantity from Slepian's principal quantity.  

What is meant by the qualifier "actual experience" here? A degree of caution is needed in explaining 

this because all objects are real in some contexts, unreal in others. We looked at "the ghost of Hamlet's 

father" in an earlier example. We might also look at the object known as "Mickey Mouse." Mickey 

Mouse is real in the context of being a cartoon character invented by Walt Disney or a costumed 

employee at Disneyland, but you would not expect a human-sized talking mouse to knock on your front 

door. We are imaginative beings and, indeed, science would not be possible without our imaginative 

abilities. Kant called this ability the human capacity for fiction, and some Kant scholars refer to this as 

our fictive faculty. Kant tells us,  

The ability to form a mental picture [fictive faculty] is the capacity for producing representations 

of things that we have never seen. This is either Imagination or fantasy. Imagination is when we 

play with the power of imagination and fabricate something for certain ends and purposes. Fantasy 

is when the power of imagination plays with us. The former is voluntary, for we can cancel and 

direct it as we please, but the latter is involuntary. Each fabrication must occur according to the 

analogy of experience, otherwise it is unbridled, unruly fantasy. We can therefore fabricate 

nothing materially, but rather only formally. If the fabrication is according to the analogy of 

experience then it is disciplined fantasy. If it is involuntary then it is specifically called unbridled 

fantasy. [Kant (1783) 29: 884-885]  

We can feel pretty safe in supposing Walt Disney had some purpose in mind before he came up with his 

idea of Mickey Mouse as a means of satisfying this purpose. Mickey Mouse is the product of imaginative 

design and has nothing at all to do with the sciences of biology or zoology. The situation gets trickier 

when a product of imaginative design is made in an attempt to explain some quandary of science. An 

example of this is provided by Wolfgang Pauli's invention of the idea of neutrinos. In physics the idea of 

conservation of energy is one of its most important and fundamental theoretical principles. But in 1914 

James Chadwick, who was studying radioactive decay, discovered what appeared to be a violation of this 

principle in experimental studies of a phenomenon called -emission.  

Some physicists, e.g. Niels Bohr, took the radical position that these experiments meant the law of 

conservation of energy did not hold for -emission. Pauli was strongly opposed to Bohr's view. He 

speculated that the problem of -emission was caused by the emission of some other yet undiscovered 

particle he called "the neutron" (it was later renamed "the neutrino" by Enrico Fermi after a different 

particle – now named the neutron – was experimentally discovered). It took until 1955 for Pauli's neutrino 

hypothesis to be experimentally confirmed by two Los Alamos physicists, F. Raines and C. Cowan. With 

this confirmation, the neutrino ceased to be merely a fantasy of imagination and became an established 

part of the ontology of physics.  

The Los Alamos experiments did not observe neutrinos by the appearance of some thing; it wasn't a 

matter of "Oh, look! There it is!" Instead the experiments produced measurements of effects that matched 

what were expected to be effects caused by neutrinos if the neutrino "really existed in physical nature." It 

was this correspondence with phenomena within the horizon of possible experience that established the 

objective validity of the neutrino as an Object of a principal quantity of Facet B. Phenomena of Facet A 

thereby acquired an empirically actual connection to Facet B.  

Above we saw Kant refer to "the analogy of experience." What this refers to is a principle of Critical 

metaphysics that goes by the name "the analogies of experience" [Kant (1787) B: 218-265]. Kant said of 

these principles,  
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Our analogies [of experience] therefore precisely exhibit the unity of nature in the context of all 

appearances under certain exponents
11

, which express nothing other than the relationship of time . 

. . to unity of apperception, which can only take place in synthesis in accordance with rules. Thus 

together they say: All appearances lie in one nature and must lie therein, since without this a priori 

unity no unity of experience, and thus also no determination of the objects in it, would be possible. 

[Kant (1787) B: 263]  

The validation of the idea of Pauli's neutrino came about because it brought together a number of 

observable phenomena in accordance with Kant's analogies of experience and, by doing so, validated the 

idea of the neutrino as a proper object of physical ontology.  

Although Kant provides a very thorough and very lengthy treatment of this, our purposes here can be 

summed up more succinctly by an explanation provided by physicist Henry Margenau. Margenau wrote,  

 A formal connection is one which sets a construct in a purely logical relation with another 

construct; an epistemic connection is equivalent to and arises from a rule of correspondence which 

links the construct with data. Examples of formal connections are: all relations between geometric 

quantities which are provable on the basis of a suitable set of axioms, such as the relations 

between angles and sides of a triangle, the sine law, the cosine law, and so forth; the relation 

between a number and its square; a circle and its radius. In physics and chemistry also, every 

connection between entities that is derivable from postulates is a formal one: Examples are the 

relation between force and acceleration of a given mass (postulate: Newton's laws); the relation 

between a point charge and its electromagnetic field (postulate: Maxwell's equations); between the 

curvature of space and the quantity of matter in the universe (postulate: Einstein's law of general 

relativity); between the temperature and the mean kinetic energy of a gas (Gibb's statistical 

mechanics); between the structure of a molecule and its molecular weight. It is true that all formal 

connections are stable only so long as certain postulates are maintained, that they are in this sense 

hypothetical judgments. It is also true that their formal character becomes less obvious when they 

are empirically verified, as many of them are. . . .  

 Epistemic connections will doubtlessly occur to the reader in considerable abundance: They 

exist between the objective tree and what is called the vision of it, between a force and an 

awareness of muscle exertion, between the weight of an object and a reading on a scale, between a 

wavelength and the discernment of a line on a photographic plate. All these experiences are linked 

by epistemic connections. One of the terms is a construct, the other is in Nature. [Margenau 

(1977), pp. 84-85]  

Secondary quantities and their combinations in Facet B fall under what Margenau called formal 

connections. What he called epistemic connections are those relationships between phenomena and 

principal quantities. Objective validity for secondary quantities of Facet B is obtained when these ideas 

have a formal connection, by means of prosyllogisms, with one or more principal quantities of Facet B 

provided these principal quantities have epistemic connections with concepts of objects in Facet A.  

What Margenau called "constructs" Kant calls ideas. Margenau tells us  

[Some constructs] stretch out two or more arms, either toward other constructs or toward Nature; 

they may be described as multiply connected. Every construct used in natural science will be seen 

to be of this type, permitting passage elsewhere in at least two ways. For example, from the idea of 

an electron one can pass on to its mass, its charge, its field. [ibid., pp. 85-86]  

He also notes that one can have other constructs for which there is only one connection to some other 

construct. He called such a construct a "peninsular" construct and said of it,  

It hangs loosely within the system and obtains what meaning it has only from a coherent set of 

                                                           
11

 An "exponent" is something that expounds or interprets.  
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others. An example of a peninsular construct is the color of an electron. No harm is done if color is 

assigned to it, but there is no way of substantiating this attribute, for it leads to no other significant 

knowledge by any formal route, no does it allow verification by any possible rule of 

correspondence. [ibid., pg. 86]  

He also noted that it is possible to form sets of constructs that are mutually connected but have no 

epistemic connections. Here he remarked,  

They may be said to form an island universe, consistent in itself though unverifiable. Science 

sometimes generates such tantalizing curiosities, then looks for possible rules of correspondence 

which might give them significance. But they are dropped again unless such rules are found. 

[ibid.] 

Mathematicians, it is to be noted, not-infrequently think up mathematical objects and structures that fall 

under Margenau's definition of "island universe constructs" so far as empirical science is concerned. This 

is not a criticism of pure mathematics, however, because with surprising frequency scientists find ways of 

forging epistemic connections to them. Non-Euclidean geometries provide one example of this. When 

they were first discovered physicists had no use for them. While they greatly unsettled the philosophy of 

mathematics, they produced no ripple of concern in the physics community. This situation changed 

radically with the publication of Einstein's theory of general relativity.  

To summarize, secondary quantities of Facet B are "formal constructs" only. They only become 

epistemologically significant by means of connection to principal quantities of Facet B that make what 

Margenau calls epistemic connections to phenomena of experience in Facet A. Critical metaphysics, 

augmented by Margenau's explanation, brings us a schematic picture of scientific ontology depicted by 

figure 8. The Objects depicted by blank circles (noumena) standing at the horizon of possible experience 

are the Objects of Slepian principal quantities. They are blank to denote they lack sensuous matter. 

Secondary quantities do not appear in this diagram; they are implicitly depicted by red connection lines. 

This is because secondary quantities are epistemologically significant but not ontologically significant.  

 

Figure 8: Schematic structure of scientific ontology. 
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There are two kinds of noumena depicted in figure 8. Correspondence noumena are Objects of ideas 

that have two or more direct epistemic connections to concepts of phenomenal objects. They generally 

stand in the role of hypothetical causes of actual phenomena in nature. Coordinating noumena have at 

least one epistemic connection to some phenomenon but do not stand in the role of the cause of an effect. 

Their primary function is, as the name implies, to provide theoretical coordination between 

correspondence noumena by means of secondary quantities. This coordination is made by formal 

connections we call physical laws of nature. As for the secondary quantities, the formal connections they 

make and the contexts they provide (through polysyllogisms and disjunctive inferences) are indicated by 

the red connecting lines.  

As for the green colored interior of figure 8, this represents phenomenal Objects within the horizon of 

possible experience. The black connecting lines represent determinant judgments of experience [Wells 

(2009), chap. 5]. At the core of the schematic we have Objects of perception, which are raw sensuous 

intuitions of objects of human perception.  

But this ontology raises another issue. What is needed for a principal quantity to have this property of 

epistemic connection? The answer to this question is a bit more complicated than one might expect. We 

will therefore devote chapter 3 to this question.  
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