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Objective

Build model-comparison methods with improved statistical error properties to
provide alternatives to Fisher-Neyman-Pearson hypothesis testing.

Approach

Combine R. Royall's concept of evidence with the model selection indexes
descended from H. Akaike's pathbreaking work.

Collaborators

Mark Taper, José Ponciano, Subhash Lele
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Fisher (1920s)

H :  Model 1 is a statistical distribution family (normal, binomial, etc.) with a

parameter restricted (ex. , ).  No alternative hypothesis (other than     

not Model 1).

Model 1 provides a likelihood function and a statistic ( , ) that serves as an 
estimate of the parameter.

The plausibility of the data arising from Model 1 decreases as distance of the
statistic from the restricted parameter value increases.

P value:  the probability that the statistic would have a value as extreme as the
observed value if the data generation mechanism were repeated.

Fisher suggested informaly that  would serve as a ordinary cutoff point for
deciding about Model 1;  if the value of  is smaller, the reasoned observer must
regard the data under Model 1 as implausible.  Model 1 is rejected.

Akin to what is called goodness of fit testing nowadays.



Neyman and Pearson (1930s)

To H , NP add H :  Model 2, an alternative hypothesis. 

Two types of errors:  Type 1 (data came from Model 1 and wrongly points to
Model 2), and Type 2 (vice versa).

Given data arise from Model 1, the probability of Type 1 error is the  of thesize
test and is denoted .  Given data arise from Model 2, the probability of Type 2
error is denoted .  The  of the test is . power  

Neyman and Pearson sought to construct a statistical rule for deciding between
Models 1 and 2 that would have good error properties.

They began by stripping the problem down to its essence;  two models, both of
which are completely specified (no unknown parameters, like binomial( , ) and 
binomial( , )). 



Neyman-Pearson setup:

   :  completely specified pdf for model 1  (H )

   :  completely specified pdf for model 2  (H )

    , , ..., :  data (iid)

                  
        likelihood functions
                  


      

     

      

           
           likelihood ratio

Likelihood ratio test: decide on Model 1 if  ,    

     decide on Model 2 if  ,    

where  is chosen so as to achieve a test of size . 



Neyman-Pearson Lemma (1933):

No other test of size  or less can have power greater than the power of the
likelihood ratio test.



Subsequent history and consequences:

Wilks (1938) added result for dealing with unknown parameters (generalized

likelihood ratio test:  log  ).      
  

GLR test requires Model 1 to be nested in Model 2.

Asymmetric roles of Model 1 and Model 2 become baked into scientific practice;
"fail to reject the null hypothesis" vs. "reject the null hypothesis" became the two
possible decisions.

Methods for sorting among many contending models are jury-rigged from
sequences of FNP pairwise tests (stepwise regression, multiple comparisons).

Data must arise from Model 1 or Model 2...   "Type 3 error" of model
misspecification could produce misleading results.

Studies are designed around  (power).  



Concept of LR as Evidence (Royall 1997)

The LR has been proposed for decades as a measure of  for H  or H ,evidence  

principally by Hacking and Edwards.  In the concept of evidence, the value of the
LR itself is evidence, not an error rate that is pre-set, designed, or attained.

Royall took the NP setup and argued that reformulating the decision between
Model 1 and Model 2 in terms of evidence improves the statistical properties of
the decision.

Evidence-based test:  decide on Model 1 (H ) if  is  times ;  decide on    
Model 2 (H ) if  is  times .  Here  is a fixed threshold for the LR.     



The approach produces a trichotomy of outcomes:

  
 



 :     strong evidence for H

   




 :    weak or inconclusive evidence

 
  
 

 
      ( or  ) :  strong evidence for H

Here  is a fixed threshold for the LR value, not determined by error rates or
sample size.  Values of , , or  for  have been suggested.   



The trichotomy of outcomes then leads to two types of errors, with two
probabilities, given that data arise from H :

P weak evidence  H P  H             






P misleading evidence  H P  H           






Similarly, given the data arise from H  :

P weak evidence  H P  H             






P misleading evidence  H P  H           






We can also define

P strong evidence for H H P  H        

          





Tasks at hand

A.  Compare error properties of FNP testing and evidence testing, when models
have been correctly specified (data arise from either  or ).       

B.  Compare error properties of FNP testing and evidence testing, when models
have been misspecified (data arise from a different pdf ).  

C.  Extend the evidence concept to models with unknown parameters (will involve
information-based indexes for model selection and the theory of maximum
likelihood estimation when models are misspecified).



Studying properties of FNP vs evidence testing, when
models correctly specified

             
   
           E log log      Kullback- 

 

   
   

                  Leibler

             
   
           E log log      divergences 

 

   
   

note:  E log log K  
   
           

 

   
       


      

     

      

           
           likelihood ratio

log log    log-likelihood ratio   
  




 

  

   
 



Note:  taken as a random variable, the log-likelihood is a sum of iid random
variables,

log log  ,   
  




 

  

   
 

so the CLT applies.  Let




  
   
   


   V log E log        

 

   
   

  log          
 
 






 
 




  
   
   


   V log E log        

 

   
   

  log          
 
 






 
 

 



If the data arise from H :

 
 


 

   log   d  normal( )   

Then:

log   asymp  normal( )   (Brownian motion approximaion)  

  




  


 


 

log   asymp  normal( )  (Sample mean distribution)  



  

Similar expressions if data arise from H .

These limiting distributions allow straightforward approximations for the error
probabilities , , , , , .       



A.  Results for correctly specified models

FNP testing:

As a function of ,  is fixed,  decreases toward zero.  

As a function of  (effect size),  decreases toward zero.   

The decision threshold  is a rapidly changing function of . 

Evidence testing:

   ,  decrease toward zero when  is large and increasing.

  increasses with  at first to a maximum value, then decreases.

        increases monotonically with  and asymptotes at .  Also, .

  is a post-data probability of misleading evidence against H  and depends

primarily on the properties of H .
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Figure 3. Evidence error probabilities for comparing two Bernoulli(p) distributions, with p1 = 0.75 and
p2 = 0.50. Top panel (A): simulated values (jagged curve) and values approximated under the Central
Limit Theorem of the probability of strong evidence for model H1, V1 = 1−M1 −W1. Bottom panel (B):
simulated values (jagged curve) and approximated values for the probability of misleading evidence M1.
Note that the scale of the bottom graph is one fifth of that of the top graph.
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Studying testing properties when models are misspecified

To models  and  we add:       

   :  The pdf for the "true" process that actually generates the data.  And now,

E log log  
   
               

 

   
                

Note that K can be positive (  closer to truth), negative (  closer to truth), or   

zero (both models equally close).  Define

 
 

   
   


   V log E log          

 

   
   

           log  
 






 
  



We then have

 
 


    log   d  normal( )


   

log   asymp  normal( )  






   


 

 log   asymp  normal( )  



  

We redefine "error" to be selecting the model "farthest" from  according to KL  
divergences.  The various probabilities are denoted , , , , , .      

     

Now we use these CLT results to explore how errors behave under FNP and
under evidence approaches.



B.  Results under model misspecification

FNP testing:

  is generally not equal to the advertised value of  and can be greater than or
less than depending on the configuration of the models.  It is easy to construct
situations in which  is a monotonic increasing function of  with an asymptote of 
one!

  is generally not equal to  and can be greater than or less than depending on
the configuration of the models.   asymptotically decreases to zero as  
becomes large.

  is generally not equal to  and can be greater than or less than depending on
the configuration of the models.



Evidence testing:

Lele's Lemma (2004)!!  The probability  of strong evidence obtained with the LR
evidence function cannot be exceeded by any other evidence function (taking
misspecification into account and using KL divergence).

    
  , , and  are not in general equal to their counterparts from correct model

specification.  However,  and  eventually approach zero asymptotically as    
 

becomes large, with , increasing at first to a maximum before decreasing.


  
 is a monotonic increasing function of  with an asymptote at .

   
 .
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Figure 6. Evidence error probabilities for comparing two Bernoulli(p) distributions, with p1 = 0.75 and
p2 = 0.50, when the true data-generating model is Bernoulli with p = 0.65. Top panel (A): simulated
values (jagged curve) and values approximated under the Central Limit Theorem of the probability (α′) of
rejecting model H1 when it is closer than H2 to the true model. Bottom panel (B): simulated values (jagged
curve) and approximated values for the probability (M ′1) of misleading evidence for model H2 when model
H1 is closer to the true data-generating process.
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Studying testing when models have unknown parameters

Models with unknown parameters can have several different configurations.



Dennis et al. Model misspecification and statistical inference

FIGURE CAPTIONS

Figure 1. Model topologies when models are correctly specified. Regions represent parameter spaces.
Star represents the true parameter value corresponding to the model that generated the data. Top: a nested
configuration would occur, for example, in the case of two regression models if the first model had predictor
variables R1 and R2 while the second had predictor variables R1, R2 and R3. Middle: an overlapping
configuration would occur if the first model had predictor variables R1 and R2 while the second had
predictor variables R2 and R3. Three locations of truth are possible: truth in model 1, truth in model 2,
and truth in both models 1 and 2. Bottom: an example of a nonoverlapping configuration is when the first
model has predictor variables R1 and R2 while the second model has predictor variables R3 and R4
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Figure 2. Model topologies when models are misspecified. Regions represent parameter spaces. Star
represents the true model that generated the data. Exes represent the point in the parameter space covered
by the model set closest to the true generating process.
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Potential evidence functions can be built from information-theoretic indexes for
model selection.  Such evidence functions become functions of the generalized
likelihood ratio statistic .

AIC log   (Akaike 1973)        

  AIC AIC AIC   ( )    
         

SIC log log  (Schwarz 1978)           

 SIC SIC SIC log  
      



Asymptotic results from statistical theory, models correctly specified

Wilks (1938), Wald (1943), H  nested in H : 


d chisquare( )  under H .

   
asymp chisquare( , )  under H ,  ( ,  a Mahalanobis distance)  



C1.  Results for correctly specified models with unknown parameters, when
models are nested or overlapping:

    and  for AIC   do not go to zero as  becomes large.   and  do go   

to zero.  AIC, when dealing with nested or overlapping models, has the error
properties of FNP testing and not those of evidence testing.

    and  for SIC   do go to zero as  becomes large.   and  go to zero   

as well.  SIC, when dealing with nested or overlapping models, has the error
properties of evidence testing.
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Figure 8. Top (A): location-shifted chisquare distribution of the difference of AIC values, when data
arise from model 1 nested within model 2. In this plot, the degrees of freedom for this distribution are
equal to ν = 3, and the shift to the left of 0 is equal 2ν = 6 (see equation 75 and text below it). This
chisquare distribution is invariant to sample size. As a result, the areas under this distribution in the intervals
(−2,+2) and (+2,∞) corresponding to W1 and M1 respectively, are invariant to sample size. Bottom (B):
noncentral chisquare distribution of the difference of AIC values, when data arise from model 2 (but not
model 1), plotted for different sample sizes. This distribution is also location-shifted but its noncentrality
parameter λ, which determines both its mean and variance, is proportional to sample size. In this illustration,
λ = n(1/4). As a result, the areas under the intervals (−2ν,−2) and (−2,+2) corresponding to the error
probabilities M2 and W2 decrease as the sample size increases.
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SIC difference
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Figure 9. Top (A): Chisquare distribution of the difference of SIC values, when data arise from model
1 nested within model 2. The chisquare distribution is shifted left as sample size increases. Bottom (B):
noncentral chisquare distribution of the difference of SIC values, when data arise from model 2 (but not
model 1), plotted for increasing sample sizes.
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Asymptotic results from statistical theory, models misspecified

White (1982), Nishii (1988), Vuong (1989)

ML estimate p , where  is value of  minimizing , ,            

 is in nested or overlapping region:

   asymp   weighted sum of chisquare( ) distributions


 for the closest model is in nonoverlapping region:

     
  asymp   normal( , )   (Brownian motion!)  

   , , , ,             
        

   

   V log



 
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C2.  Results for misspecified models with unknown parameters

 for the closest model is in nested or overlapping region:

  
   and  for AIC   do not go to zero as  becomes large.   and  do go   

 

to zero.  AIC, when dealing with nested or overlapping models, does not have
error properties of evidence testing.

  
   and  for SIC   do go to zero as  becomes large.   and  go to zero   

 

as well.  SIC, when dealing with nested or overlapping models, has the error
properties of evidence testing.


 for the closest model is in nonoverlapping region:

  
    and  for both AIC  and SIC    go to zero as  becomes large.   and  



 
 go to zero as well.  Both AIC and SIC, when dealing with nonoverlapping

models, have the error properties of evidence testing.
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Figure 10. Simulation of Vuong’s (1989) results for misspecified models. Top (A): When f1 (x, θ1
∗) and

f2 (x, θ2
∗) are the same model (either f1 is nested within f2, or f1 overlaps f2, and the best model is in

the nested or overlapping region), then the asymptotic distribution of G2 is a “weighted sum of chisquares”
that does not depend on n. The error probabilities M1 and W1 do not decrease to 0 for ∆AIC12 but do
decrease for ∆SIC12. Bottom (B): When the models are nested, overlapping, or nonoverlapping, but a
nonoverlapping part of f1 or f2 is closer to truth, then G2 has an asymptotic normal distribution with mean
and variance that depend on the sample size and the error probabilities M1 and W1 decrease to 0 for both
∆AIC12 and ∆SIC12. Details of these two settings in (A) and (B) are found in a fully commented R code.
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How to do it

1.  Use SIC, or any consistent model selection index based on likelihood ratio.

2.  Choose  and , the decision thresholds.  The decision rules will be:  

  Strong evidence for Model 1 if SIC .   
  Strong evidence for Model 2 if SIC .  
  Insufficient evidence if SIC .     

3.  The thresholds  and  can be set by calculating (or simulating) the  

misleading evidence probabilities  and  for the applicable sample size .   

The calculations or simulations are akin to power calculations.  One procedure is
to fit both models to the data (ML estimation), then simulate SIC  from each 

fitted model, estimating the two misleading evidence probabilities  and  for  

particular thresholds.

4.  Rest well at night knowing that the evidence-based decsion will have some
robustness to model misspecification.
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TABLES

Table 1. A comparison of inferential characteristics between Fisherian significance testing (P-values sensu
stricto), Neyman-Pearson hypotesis tests (including P-values for likelihood ratios) and evidential statistics.

Inferential characteristic P-value NP-test Evidence
Equal status for Null and Alternatives NA No Yes

Allows evidence for Null No No Yes
Accommodates multiple models No Awkward Yes

All error rates go to zero as sample size increases No No Yes
Total error rate always decreases with increasing sample size No No Yes

Can be used with non-nested models NA Not Standard Yes
Evidence and error rates distinguished No No Yes

Robust to model misspecification Yes No Yes
Promotes exploration of new models Yes No Yes
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