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Scientists need to compare the support for models based on observed phenomena.
The main goal of the evidential paradigm is to quantify the strength of evidence in
the data for a reference model relative to an alternative model. This is done via an
evidence function, such as 1SIC, an estimator of the sample size scaled difference
of divergences between the generating mechanism and the competing models. To use
evidence, either for decision making or as a guide to the accumulation of knowledge,
an understanding of the uncertainty in the evidence is needed. This uncertainty is
well characterized by the standard statistical theory of estimation. Unfortunately, the
standard theory breaks down if the models are misspecified, as is commonly the case
in scientific studies. We develop non-parametric bootstrap methodologies for estimating
the sampling distribution of the evidence estimator under model misspecification. This
sampling distribution allows us to determine how secure we are in our evidential
statement. We characterize this uncertainty in the strength of evidence with two different
types of confidence intervals, which we term “global” and “local.” We discuss how
evidence uncertainty can be used to improve scientific inference and illustrate this with
a reanalysis of the model identification problem in a prominent landscape ecology study
using structural equations.

Keywords: evidential confidence intervals, unconditional and conditional inference, information criteria, model
selection, non-parametric bootstrap, pre- and post-data inference, profile likelihood, reliability

1. INTRODUCTION

When a person supposes that he knows, and does not know; this appears to be the great source of all the
errors of the intellect.

Plato. The Sophist. 360 B.C.E Translated by Benjamin Jowett

One of the main goals of scientific inference is to delineate and understand the underlying
mechanism of a phenomenon of interest. In practice, scientists have several different hypotheses or
proposed mechanisms, and want to use the observed data to quantify the strength of evidence for
one mechanism over the alternatives. The evidential approach to statistical and scientific inference
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uses estimates of the difference of the divergences from the
true mechanism to the competing mechanisms to quantify the
strength of evidence in the observed data for one mechanism over
the other. The evidence function is an estimator of the sample
size scaled divergence difference between two candidate statistical
mechanisms (Lele, 2004a). Importantly, evidence functions can
be applied pairwise to multiple models to determine the support
for multiple alternative mechanisms.

Dennis et al. (2019) demonstrates that evidential inference
makes fewer errors than does the Neyman-Pearson hypothesis
testing (NPHT) approach at all but the very smallest sample
sizes. This is true if the models being compared are “correctly
specified.” Evidential inference is even more strongly favored if
the model set is “misspecified” (definitions of correctly specified
and misspecified model sets follow below). Unfortunately,
Dennis et al. also shows that the probability of error depends on
the nature of model misspecification and can be large. Ponciano
and Taper (2019) demonstrates that the entire geometry of the
model set and unknown generating process influences inference.
Lele (2020a) discusses that uncertainty in science can be usefully
expressed in multiple fashions. The current paper is written
as a unifying response to these three papers and will be most
clear if read in conjunction with them. The goal of the current
paper is to introduce empirical measures of evidential uncertainty
that are both valid and estimable in the presence of model
misspecification.

Various papers (Lele, 2004a; Taper and Lele, 2011; Taper and
Ponciano, 2016; Jerde et al., 2019) discuss the desiderata that
an evidence function should satisfy. In comparing a reference
model to an alternative, the log-likelihood ratio (LLR) is the
most commonly used evidence function. An evidence function is
usually constructed so that if the realized value of the evidence
function, the observed evidence, is larger than a pre-specified
positive threshold value

(
kR
)
, we say that data strongly support

the reference model. If it is below a negative threshold value(
kA
)

(i.e., closer to negative infinity), data strongly support
the alternative model. If the evidence function is in between
these two thresholds, data are said to be unable to distinguish
between the two models.

A commonly used alternative to the evidential framework,
Neyman-Pearson tests, accords a special statistical status to
the null model in that the type I error probability is fixed
(does not depend on sample size) and the p-value is calculated
with only the null model. Consequently, a variety of inferential
distortions can famously occur when Neyman-Pearson testing
is used for purposes beyond its working specifications (Dennis
et al., 2019). By contrast, in the evidential framework no special
status is accorded either the reference or alternative model. The
designations of reference or alternative serve only to help an
analyst understand which model is supported (relative to the
other) by positive or negative evidence and do not confer any
differences in statistical properties. Royall (1997, 2000) considers
the situation where the reference and alternative models are fully
specified, that is, there are no parameters with unknown values
that need to be estimated from the data. Under the assumption
that the reference model is the true generating mechanism,
he uses the asymptotic distribution of the LLR to compute

the probability of misleading evidence, that is the probability
that observed evidence would strongly support the alternative
(i.e., wrong) mechanism. He also considers the probability
of weak evidence, that is the probability of being unable to
distinguish between the two mechanisms. Following the results
of Godambe (1960), Lele (2004a) shows that, under regularity
conditions, among all evidence functions the LLR is optimal
in the sense that the rate at which the probability of strong
evidence converges to 1 is the fastest. These error probabilities,
especially the probability of weak evidence, are useful for pre-
experiment decisions on sample size (Strug et al., 2007) or
optimal designing of experiments.

Dennis et al. (2019) recognizes the reality that most models are
only approximations and hence the true generating mechanism
is likely to be neither the reference nor the alternative model.
Following Dennis et al. (2019), we consider a model misspecified
if the data distribution it predicts cannot be made to match
the distribution of the true generating process by appropriate
parameterization. A model set is misspecified if all of its
members are misspecified. In practice, the model sets used in
science are almost always misspecified to some degree and may
be badly misspecified particularly during early exploration of
scientific phenomena.

The asymptotic distribution of the LLR under model
misspecification (Vuong, 1989; Sayyareh et al., 2011; Dennis et al.,
2019) depends on the geometry of the misspecification, that is,
how the true generating mechanism and the two competing
model spaces relate to each other. In scientific studies, instead of
fully specified reference and alternative models, one generally has
reference and alternative model spaces, a set of parametric models
whose parameters need to be estimated using the observed data.
Such a set forms a space because its elements have geometrical
relationships such as divergences between them. Dennis et al.
(2019) uses the asymptotic distribution of the LLR to compute
the error probabilities in comparing model spaces when the
true generating model might be outside the specified model
spaces. The current paper lists all possible topologies, i.e.,
configurations, for the generating mechanism and competing
model spaces and corresponding asymptotic distributions of the
LLR. One important feature of these asymptotic distributions
is that the means of these distributions increase toward infinity
at rates proportional to sample size, n, whereas the standard
deviations increase toward infinity at rates proportional to n1/2,
producing tail probabilities (probabilities of misleading evidence)
that converge to zero (because the coefficient of variation goes
to zero). Thus, in all evidential comparisons using the LLR, as
the sample size increases, probability of strong evidence for the
best approximating mechanism converges to 1 and all other error
probabilities converge to 0 (Dennis et al., 2019).

As discussed by Royall (1997, 2000, 2004), this behavior of the
error probabilities is in stark contrast to the classical Neyman-
Pearson approach where the probability of type I error remains
constant for all sample sizes. The consequence to the applied
scientist is that the true generating mechanism is rejected in
favor of a misspecified null some fraction of the time regardless
of the amount of data collected. Of course, classical statistical
inference does not stop at hypothesis testing. It also computes
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the sampling distribution of the estimator of the effect size.
Unlike the probability of type I error in hypothesis testing,
as the sample size increases, the sampling distribution does
concentrate around the true effect size, thus leading to the correct
inference. Royall (2000) and Dennis et al. (2019) obtain this
sampling distribution asymptotically. Several excellent papers
(Linhart, 1988; Shimodaira, 1998; Ng and Joe, 2016) construct
confidence intervals for evidence under model misspecification
using the asymptotic theory of White (1982) and Vuong (1989).
Our experience in simulations is that the distribution of evidence
does not approach its asymptotic form until sample size is quite
large (Jerde et al., 2019; Taper et al., 2019).

Again, the goal of this paper is to obtain a fuller understanding
of uncertainty in observed evidence under realistic sample sizes
by estimating the finite sample sampling distribution of the
strength of evidence under model misspecification via non-
parametric bootstrap. In an earlier paper, Taper and Lele (2011)
had suggested the use of non-parametric bootstrap to understand
finite sample uncertainty in observed evidence when the true
generating mechanism may be different than the reference and
alternative models. This current paper is a detailed exploration of
this suggestion.

The non-parametric bootstrap is a computational approach
(Hall, 1986, 1987; Efron and Tibshirani, 1993) used to get a
finite sample approximation to the sampling distribution of a
statistic that is valid under model misspecification. Generally,
the sampling distribution of the estimator is far more useful for
supporting scientific arguments than is a hypothesis test by itself
(Xie and Singh, 2013; Schweder, 2018).

An inferential statement is any statement about the model
parameters, form of the underlying mechanism, or a future
outcome. An inferential statement becomes a statistical
inferential statement only when a measure of uncertainty is
attached to it (Cox, 1958). An accessible review of various
approaches to quantifying uncertainty in an inferential statement
is available in Lele (2020a). The classical frequentist inference uses
aleatory probability (frequency of an event under hypothetical
infinite replication of experiment) to quantify uncertainty of
an inferential statement. To obtain the aleatory uncertainty
of an inferential statement, a critical question that needs to
be answered is: which experiment/sampling design do we
(hypothetically) repeat? Lele (2020a) uses the simple linear
regression model to illustrate the distinction between the global
(also known as unconditional, pre-data or, pre-experiment) and
local (also known as conditional, post-data or, post-experiment)
uncertainty. In this paper, we augment that illustration by
comparing the differences between global and local uncertainty
in mark-recapture analysis and in structural equations.

Although the unconditional/conditional distinction has been
in the theoretical statistics literature since Fisher (1936), the
difference has not been well understood by ecologists and
scientists in general. To the extent that the difference has been
recognized at all it has been common to ascribe unconditional
inference to frequentists and conditional inference to Bayesians.
However, we agree with Goutis and Casella (1995) that:
“In any experiment both pre-data inferences and post-data
inferences are important, and each can be made within either

frequentist or Bayesian paradigms, which perhaps shows that
the frequentist/Bayesian distinction is not as fundamental as the
pre-data/post-data distinction.”

In the ecological literature, both kinds of intervals have
been used, often without an awareness of the distinction.
This is a mistake, because the two kinds of intervals answer
different scientific questions. In the discussion, we expand on the
interpretation of the two intervals.

Here we consider the evidential approach to model selection
under model misspecification. As was described in Dennis et al.
(2019), the reference and the alternative models are not fully
specified. There are parameters with values that need to be
estimated and hence the set-up discussed in Royall (1997) must
be altered. Because these two competing models may involve
different number of parameters, an unmodified LLR is not an
appropriate evidence function, and the LLR needs to be penalized
for the number of parameters to be estimated (Akaike, 1973).
Furthermore, to make the error probabilities of misleading and
weak evidence to converge to 0 as sample size increases, we
also need to moderate the penalty by a function of the sample
size that grows to infinity at a rate between log(log(n)) and
n (Nishii, 1988). The appropriate evidence functions for the
model selection problem are based on the consistent information
criteria (IC) such as the Schwarz’s Information Criterion (SIC)1

(Schwarz, 1978) that incorporates both the sample size and
the number of parameters in its penalty term. Inconsistent
criteria, such as the Akaike Information Criterion (AIC), tend
to overfit at all sample sizes and do not lead to valid evidence
functions due to the absence of an augmentation of the penalty
by the sample size. Note that despite having a sample size
correction, the AICc (Hurvich and Tsai, 1989) is not consistent.
Its sample size correction is aimed at correcting small sample
bias, not large sample inconsistency. We will return to this point
in the discussion.

All of the above measures are based on the Kullback-Leibler
divergence. However, one can potentially use any divergence
measure and with appropriate (i.e., consistent) sample size and
parameter number penalty function, one can create a valid
evidence function. The evidence function is, as will be made clear
later, a scaled and penalized difference between the estimates of
divergences of two models each to the generating process.

In this paper, we show that model selection based on
a bootstrap bias corrected information criterion known as
the extended information criterion (EIC) (e.g., Kitagawa and
Konishi, 2010) is strongly connected to various bias corrections of
the profile likelihood (e.g., Pace and Salvan, 2006). We combine
these two ideas with the use of a consistent penalty and show that
a non-parametric bootstrap approach can be used to obtain finite
sample and consistent estimates of global and local uncertainty in
the observed strength of evidence for the reference model vis-à-
vis the alternative model. The mathematical details are given in
Section 4. As a consequence of this development, we will use as

1The SIC is frequently referred to as the BIC or Bayesian Information Criterion.
Since we use the criterion as one of a series of criteria, all with frequentist
derivations (Nishii, 1988) we use the notation SIC to avoid Bayesian implications.
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our evidence function the mean of a bootstrapped distribution of
1SICs.

Pace and Salvan (2006) and Kitagawa and Konishi (2010) use
the bootstrap only for computing the bias correction factor. In
contrast, we also use the entire sampling distribution to obtain
valid, finite sample, global and local confidence intervals for the
strength of evidence. That is, our confidence intervals will also be
based on the quantiles of a bootstrapped distribution of1SICs.

These confidence intervals are extremely helpful in drawing
scientific conclusions (Tukey, 1960). For example, if most of the
sampling distribution is above the threshold, we have not only
strong evidence, but it is also very unlikely to be strong by chance.
We define such evidence as secure. If the sampling distribution
is such that a substantial portion is below the threshold, the
observed evidence may be strong, but it cannot be considered
secure, and more data may be needed to clarify the situation.

Hoping to stimulate practicing scientists with the utility of our
approach before they encounter the mathematics of our methods,
this paper proceeds as follows: In Section 2, we discuss the
implications of uncertainty in evidence and the use of sampling
distributions of the strength of evidence in drawing scientific
conclusions in detail. In Section 3 we apply these ideas in a
reanalysis of a prominent ecological experiment analyzed using
structural equations models (SEM) and discuss the scientific
implications of the uncertainty in the strength of evidence.
Section 4 describes the underlying mathematical concepts and
the methodology for computing finite sample, global and local
sampling distributions of the strength of evidence for model
selection. In Section 5, we validate the methodology using
simulations for model selection in linear regression. In Section
6, we discuss implications of the uncertainty quantification of
the strength of evidence for the pursuance of science and suggest
avenues for further research. Section 7 concludes.

2. SCIENTIFIC INFERENCE UNDER
EVIDENTIAL UNCERTAINTY

First, we note that simulations as well as the analytical results
in Dennis et al. (2019) show that the sampling variability in
evidence can be substantial. Hence using empirical evidence
without a measure of uncertainty can be dangerous in
practice leading to overconfidence, wrong decisions, misleading
inferences, and misguided scientific enquiry. Furthermore,
under model misspecification, evidence functions, such as
the LLR and others become detached from model-based
estimates of error probabilities and are just measures of
relative plausibility (Barnard, 1949; Fisher, 1922, 1960; Sprott,
2000). Non-parametric confidence intervals on the strength of
inference then allow us to reattach our inferences to probability
measures, although there is a considerable difference in what
those probabilities mean between global and local inference.
Before discussing the methodology to quantify global and local
uncertainties in evidence and their real-world applications, let
us first discuss how the sampling distribution of the strength of
evidence could be used to draw scientific conclusions.

Royall (1997) considers three categories of strength of
evidence: Strong evidence for a reference model, strong evidence

for the alternative model, and weak evidence when the strength
of evidence cannot distinguish between the two models. Often
in ecological analysis, one finds the strength of evidence that is
neither so weak that one feels comfortable saying one cannot
distinguish between the models nor so strong that one is willing
to stake a reputation on it. Hence, we suggest using five categories
for strength of evidence, inserting categories of prognostic
evidence for the reference model and prognostic evidence for the
alternative. See Box 1 for a more complete discussion.

One final difference between Royall’s characterization of the
strength of evidence and our characterization is that Royall
considered the strength of evidence a ratio of likelihoods. We, on
the other hand always consider strength of evidence as differences
on a logarithmic scale (see discussion in Barnard, 1949). This ties
our conceptualization more closely with information theory and
the comparison of divergences.

This seemingly small difference marks large differences
between our current understanding and that expressed in Royall
(1997). We differ from Royall primarily in two intertwined but
distinct issues. The first is the utility and scope of the “likelihood
principle” (LP). And the second is the usefulness of measures of
“pre-data” and “post-data” uncertainty.

Royall’s (1997) evidence is developed axiomatically from the
“likelihood principle” (Birnbaum, 1962). We do not deny the
likelihood principle within the context it was originally stated:
“We deliberately delimit and idealize the present discussion by
considering only models whose adequacy is postulated and is
not in question” (Birnbaum, 1962). Unfortunately, this means
that the likelihood principle and everything that follows from it
is silent on what happens if models are at all misspecified. We
agree with Sprott (2000, p. 105) that “Since few scientists would
claim that the model and surrounding assumptions are exactly
correct, particularly in the latter situation, the domain of scientific
application of LP seems extremely narrow.”

We develop evidence as the difference of estimates of
the distance of a modeled distribution to the generating
process’s distribution. This definition is compatible with model
misspecification. Further, as we have previously demonstrated
(Lele, 2004a; Taper, 2004; Dennis et al., 2019 in this research
topic), under correct model specification, along with both models
being simple hypotheses (i.e., no parameters with unknown
values), this definition is compatible with the Royall’s likelihood
ratio definition of evidence, if one uses the Kullback-Leibler
divergence as a distance measure. We also suggest and use
distances that are different from KL distance. That negates the
likelihood principle in its purest form. For example, design seems
to play a role (Lele, 2004a; and our discussion in Section 6).

Royall’s commitment to the likelihood principle entails a
stance supporting the irrelevance of uncertainty estimates of
evidence based on sample space probabilities, such as pre-
and post-data error probabilities. Nevertheless, Royall sets great
stock by his argument that you don’t need to worry about the
probability of misleading evidence post data, because it will
always be small if the LR evidence is large. Royall’s argument
falls short when there are parameters with values to be estimated
and/or when there is model misspecification. We have previously
argued (Taper and Lele, 2011; Dennis et al., 2019) that pre-
and post-data measures of uncertainty are useful for scientists
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BOX 1 | Categories of strength of evidence.
Often in ecological analysis, one finds evidence that is neither so weak that one feels comfortable saying one cannot distinguish between the models at all nor so
strong that one is willing to stake a reputation on it. Thus, to the thresholds kA and kR we add the thresholds ka and kr. Evidence between the thresholds kA and ka

and between kr and kR could reasonably be called moderate, but to avoid a clash in abbreviations with the error category of misleading evidence, we will call such
evidence prognostic. Now evidence is divided into five categories: strong evidence for the alternative model, prognostic evidence for the alternative model, evidence
so weak that it is best to say that neither model is favored, prognostic evidence for the reference model, and strong evidence for the reference model.

(1) Strong evidence for the reference model if the strength of evidence is larger than kR.

(2) Prognostic evidence for the reference model if the strength of evidence is between kr and kR.

(3) Weak evidence favoring neither model if the strength of evidence is between ka and kr.

(4) Prognostic evidence for the alternative model if the strength of evidence is between kA and ka.

(5) Strong evidence for the alternative model if the strength of evidence is less than kA.

Royall (1997) pointed out that on occasion, one can have strong evidence that one model, say the reference, in your comparison is closer to the generating process
than the other, say the alternative, when in fact it is the alternative that is truly closer to the generating process. Royall called such counterfactual evidence
“misleading.” With the weaker category of prognostic evidence, it is even more likely that evidence that is counterfactual will be estimated. We designate
counterfactual prognostic evidence as “confusing evidence.” With real data, one does not know if strong evidence is in fact misleading, or if prognostic evidence is
confusing. However, in design and validation studies, whether analytic or computational, the researcher does know when evidence is misleading or confusing, and
these categories are very helpful (see Section 5).

It is important to realize that the sign of evidence only indicates which model is estimated to be closer to the generating process, positive for the reference model and
negative for the alternative. Previously in the literature, kA has been set symmetrically to −kR. In specific cases, there could be reason for asymmetry in thresholds,
either because of asymmetry in probability models or because of decision cost. For simplicity, we adopt symmetric thresholds with −kp and kp indicating the
thresholds between weak evidence and prognostic evidence for the alternative and reference models respectively. Similarly, −kS and kS are the thresholds between
prognostic evidence and strong evidence for the alternative and reference models. The boundaries for our categories then become: strong evidence for the
alternative = −kS, prognostic evidence for the alternative = −kp, prognostic evidence for the reference = kp, and strong evidence for the reference = kS. Jerde et al.
(2019) discuss interpretations for levels of evidence. Following their recommendations, we define kp ≡ 4 and kS ≡ 7.

While we have introduced thresholds, it is important to realize that these are not the absolute accept/reject thresholds of NPHT. They create descriptive categories to
help us think, like the names of colors. Light with a wavelength of 521 nm is called a green while that with a wavelength of 519 is called a cyan, but the difference is
slight. These thresholds should be thought of “as more what you call guidelines, than actual rules”2 (Bruckheimer and Verbinski, 2003).

We note finally that Dennis et al. (2019) used a reversed direction for the evidence scale, in order to compare more clearly evidence analysis with Neyman-Pearson
hypothesis testing. Dennis et al. posed a correspondence between the reference model in evidence analysis and a NPHT null hypothesis, along with a
correspondence between the alternative models, to study error properties of the two analysis approaches. It was convenient to define evidence strength for the
alternative to increase as the evidence function moved in the positive direction (by simply reversing the difference of SICs) instead of the negative direction. This
defined evidence for the alternative model to be in concordance with the direction favoring the alternative hypothesis in NPHT according to the generalized likelihood
ratio statistic (G2), allowing easy study of errors with the well-known asymptotic distributions of G2. Either direction for evidence favoring the alternative model can be
used provided one stays consistent within an application. In the present paper, it is convenient to adopt the convention described earlier in this box, because errors
will be estimated by bootstrapping rather than by asymptotic distributions of G2.

to think about. Even in the correct specification case where the
(post-data) probability of misleading evidence is bounded by
1/LR, other uncertainty measures are useful for study planning
and probing the extent of the results. In the more usual
case of model misspecification, estimation of the probability
of misleading evidence is not simply a matter of transforming
the evidence. We have shown (Dennis et al., 2019) that it also
depends on the geometry of the model set and the generating
process. Importantly, the probability of misleading evidence is
not guaranteed to be small—it can be as large as 0.5. Thus,
measures of the uncertainty of evidence are a critical complement
to an estimate of evidence. Further, to be useful, such measures
must be estimable in the presence of model misspecification.
In this work, we show that non-parametric bootstrap greatly
expands the options, capabilities and the nature of the inferential
problem under which estimating these measures is possible.

We are not alone in our insistence on a measure of
uncertainty in evidence. Alan Birnbaum, after being an early
advocate of Hacking’s (Hacking, 1965) LR formulation of
statistical evidence, strongly repudiated it in Birnbaum (1970,
1972) on the grounds of its lack of confidence measures.

2As voiced by the character Hector Barbossa https://www.youtube.com/watch?v=
6GMkuPiIZ2k&ab_channel=JesseDB

If there has been ‘one rock in a shifting scene’ or general statistical
thinking and practice in recent decades, it has not been the
likelihood concept, as Edwards suggests, but rather the concept by
which confidence limits and hypothesis tests are usually interpreted,
which we may call the confidence concept of statistical evidence.
This concept is not part of the Neyman-Pearson theory of tests and
confidence region estimation, which denies any role to concepts of
statistical evidence, as Neyman consistently insists. The confidence
concept takes from the Neyman-Pearson approach techniques for
systematically appraising and bounding the probabilities (under
respective hypotheses) of seriously misleading interpretations of
data. (The absence of a comparable property in the likelihood and
Bayesian approaches is widely regarded as a decisive inadequacy.)

Birnbaum (1970)

We believe that the current paper rehabilitates statistical
evidence by coupling it with an estimate of confidence.

2.1. Understanding Global and Local
Uncertainty in Evidence
Confidence intervals are a mainstay in ecological inference,
increasingly and justifiably so (Johnson, 1999; Ponciano et al.,
2009; Halsey, 2019; Holland, 2019; Fieberg et al., 2020). They
transmit a more complete and interpretable representation of
the information in data than do hypothesis tests. A confidence
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interval is a range of values for a statistic, a function of the data,
that is expected to cover (capture, include) an estimation target
a given per cent of the time (e.g., 95%) under repetition of a
specified hypothetical experiment (Neyman, 1937). The target
of an interval is something in nature about which we would
like to make an inference such as a population parameter or a
function of a parameter.

For evidence, there are both local and global intervals that can
be calculated (see Section 4 for details). In order to understand
confidence intervals for evidence, it is important to realize that
not only are the interval widths different, but that the targets
are also different.

The global target is the difference between the divergences
of the best possible representations of the two models to the
natural generating process. The uncertainty in the global interval
includes the sampling uncertainty for the data, model estimation
uncertainty given the data, and uncertainty due to model set
misspecification.

The local target is the evidence in the observed data for
the best possible representation of one model over the best
possible representation of the other model. The uncertainty in the
local interval represents just the model estimation uncertainties
given the observed data, and uncertainty due to model set
misspecification.

Global intervals reflect the variation in the estimates
if independent experiments are conducted in a manner
like the original experiment. The local intervals reflect the
informativeness of the specific experimental outcome in hand.

The local interval can capitalize on lucky samples to make
precise inferences about the strength of evidence for the reference
model relative to the alternative model. On the other hand,
with unlucky samples where the parameter estimate may be
far from the truth, the local intervals also end up making
precise but misleading inferential statements. Global intervals,
because they average over all possible datasets, tend to be
wider than the local intervals. They are conservative in their
uncertainty quantification, making strong inferential statements
only cautiously. That does not mean that the global intervals are
without use. Scientific results need to be validated by independent
replication. A global interval indicates how discrepant the results
of a repetition of the experiments could be from the original
before contradicting your results and hence protects against the
possibility of being contradicted. A worked example of global and
local intervals in a mark recapture analysis can be found in Box 2.

2.2. Interpreting Evidential Uncertainty
Generally, desirable properties in confidence intervals are proper
coverage and given proper coverage, shortness of length (Casella
and Berger, 2002). A confidence interval can either cover the
target or it can miss it. If the interval fails to cover the target, it can
either be entirely above the target (miss high) or entirely below it
(miss low) (see Figure 1). It is often, but not always, considered
desirable if intervals that miss the target value are distributed
equally above and below it. Evidence is one of the cases where an
equal distribution of non-coverage is undesirable. In this context
missing high is superior to missing low. Both types of intervals
misrepresent the confidence one should have in the evidence, but

the high miss is at least always indicating a correct assessment
while a low miss could be supporting an incorrect assessment. Of
course, this is assuming the expected evidence is positive, as in
Figure 1, if the expected evidence were negative, the desirability
of missing high and low would be reversed. Really, we mean that
it is better for the interval to miss its target distally from 0 than
to miss proximally to 0. However, in this simulation study the
evidential comparisons are arranged so the reference model is
always the better model as to keep the language of missing high
and low less confusing.

The categories of evidence introduced in Box 1 suggest useful
ways to apply confidence intervals for strength of evidence to
scientific inference. Scientifically, the paramount question is:
is the evidence veridical (i.e., in agreement with fact) or is it
misleading? The intervals we propose estimating can give us
confidence in our answer. We propose that if the proximal bound
of this confidence interval is distal to kS that it be considered “very
secure.” If the proximal bound falls between kS and kp then the
evidence should be considered “secure.” Finally, if the proximal
bound is proximal to kp or the interval overlaps 0 the evidence is
“insecure.”

These three levels of strength of evidence and two levels of
security of evidence create six heuristic categories:

1. Strong and very secure (SV): The point estimate of
evidence (e.g., 1SIC) is strong and the lower bound of
uncertainty indicates that we have confidence that the
target (true evidence) is also strong.

2. Strong and secure (SS): The point estimate of evidence
is strong, and we are confident that the true target is
at least prognostic. There is very little chance that this
evidence is misleading.

3. Strong but insecure (SI): The point estimate of
evidence is strong, but we cannot be confident that
the target is not weak.

4. Prognostic and secure (PS): The point estimate of evidence
is prognostic, and we can be confident that the target is at
least prognostic.

5. Prognostic but insecure (PI): The point estimate of
evidence is prognostic, but we are not confident that the
target is not weak.

6. Weak and insecure (WI): The point estimate of evidence is
weak and thus by definition, we are not confident that the
target is not weak.

As sample size increases, a majority of the sampling
distribution lies above the strong evidence threshold and the
probability of obtaining evidence that is not SS diminishes to
0 (Dennis et al., 2019). There is, of course, the pathological
case where two models are equally divergent from the true
generating process. Were this curiosity ever to occur, then each
model would be strongly and securely selected with probability
0.5. It is arguable that, even in such a situation, no error has
occurred, as in each case a model closest to the generating
process has been selected. Substantial discussion on interpreting
statistical evidence when augmented with confidence intervals
is given in Box 3.
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BOX 2 | Global and local intervals in mark/recapture analysis.
In ecology, where uncertainty in the study systems is ubiquitous, it is common practice to formulate a scientific hypothesis in the form of a simplified probabilistic
model of how the data arose. This simplification allows the analysts to focus the inferential process on a typically small set of quantities bearing strong ecological or
management importance. Such simplifications are in fact conceptual restrictions on how the data arose and are used to formulate the likelihood function. Multiple
uncertainty simplifications/restrictions are incorporated in the form of multiple conditioning layers. Take for instance a simple closed population mark-recapture
experiment where in a first visit to a study area, a number of animals of the species of interest are marked and released. In a second visit, a sample of animals from
the same population are captured and the number of previously marked animals in that sample recorded. Under that setting, different levels of conditioning restrict
more and more the sampling uncertainty while keeping the focus on the same inferential quantity of interest—the total population size. We prefer the terms “global’
and “local” because they evoke the scope of inference that can be addressed by each type of uncertainty. The sampling distribution for global uncertainty is
computed using the entire sample space whereas “local” uncertainty is computed using a relevant subset of the sample space (Buehler, 1959).

The key question in global and local inference is what components of your data do you want to be considered fixed (or given) and what components do you want to
be considered random (or representative). A completely unconstrained interval is considered global. Intervals with constraints are considered local. An alternative
way of approaching this question, which may be clearer for some, is to recognize that a confidence interval represents the variability in hypothetically repeated
experiments. When you treat a component as fixed or random, you are specifying different hypothetical experiments. One of the goals of confidence intervals is to
define what estimates a skeptic who tries to replicate the experiment might obtain. Different types of experimental conditions that the skeptic might use dictate the
choice of the interval.

We illustrate the concepts of global and local inference using the familiar problem of population size estimation using the Lincoln-Peterson estimator. We use the
data from a published experiment on iguana population density to create a realistic framework along with some R commands to demark the global and local
differences clearly in the calculations. The data and a more complete treatment can be found in Powell and Gale (2015).

Below is a mark-recapture data set, describing one re-sampling occasion. On day 3 of their experiment 131 individuals, n, are captured and 116, x, of these have
previously been marked. Initially (days 0, 1 and 2) m = 221 individuals have been captured, marked and released:
m <- 221
n <- 131
x <- 116

From these data we estimate a total population size using the Lincoln-Petersen estimator. Thus, the target for point and interval estimation is the true population size.
As it happens, the same estimator is obtained whether you assume that: (1) Both m and n are fixed. (2) m is considered fixed, but n is not. And (3) Both m and n are
considered random.

While the estimate of the total population for these three cases is identical, the uncertainty around it is not. Each set of assumptions fully determines the confidence
intervals. We demonstrate this via parametric bootstrap (PB) because of how the levels of randomness enter at each stage is much more perspicuous in the PB
code than in the corresponding analytic formulae.

Parametric Bootstrap
Compute the Lincoln-Petersen estimator for the sample at hand as well as the nuisance parameter phi.hat (the capture probability)

t.hat <- floor((n*m)/x) 
print(t.hat) 

## [1] 249 

phi.hat <- n/t.hat # estimated capture probability 
print(phi.hat) 

## [1] 0.5261044 

Now let’s set our PB simulation parameters to these two estimates:

t.true <- t.hat 
phi.true <- phi.hat 

Next, set the total number of simulations
B <- 10000 

and then create empty arrays to store the three types of estimates

# Lincoln Petersen constrained on m and n (ultimate local: fixed m and n)  
LP.mn.bt <-  rep(NA,B) 

#Lincoln Petersen constrained on m (local-fixed- m, but global-random- n)  
LP.m.bt <-  rep(NA,B)  

#Lincoln Petersen unconstrained (Global m and global n i.e. both are random)
LP.bt <-  rep(NA,B)  

Finally, just turn the crank on the PB iterations and store them:

for (i in 1:B){

#### Simulating data and computing t.hat under the first assumption:
X.mn <- rhyper(nn=1, m=m,n=(t.true-m),k=n) #constrained on m and n
LP.mn.bt[i] <- m*n/X.mn

#### Simulating data and computing t.hat under the second assumption
N <- rbinom(n=1,size=t.true,prob=phi.true) # unconstrained
X.m <- rbinom(n=1, size=min(m,N), prob=m/t.true)  #constrained on m but not n
LP.m.bt[i] <- m*N/X.m

#### Simulating data and computing t.hat under the third assumption

(Continued)
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BOX 2 | (Continued)

  M <- rbinom(n=1,size=t.true,prob=phi.true) # unconstrained 
  X <- rbinom(n=1, size=min(M,N), prob=M/t.true)    # not constrained on either 
  LP.bt[i]   <-  M*N/X 
} 
 

# Throw out the outcomes for which x=0. A result of x=0 is possible, but gives  
# an infinite estimate of population size.  
LP.mn.bt <- LP.mn.bt[is.finite(LP.mn.bt)] 
LP.m.bt <- LP.m.bt[is.finite(LP.m.bt)] 
LP.bt <- LP.bt[is.finite(LP.bt)] 

m or n 

It is instructive to look at the sample spaces for these three estimators:

Sample Spaces :

LP.bt : �G = {M ∈ {0, · · · ,T} ,N ∈ {0, · · · ,T} ,X ∈ {max (0,N − (T −M)) , · · · ,min (M,N)}}

LP.m.bt : �L1 = {m,N ∈ {0, · · · ,T} ,X ∈ {max (0,N − (T −m)) , · · · ,min (m,N)}}

LP.mn.bt : �L2 = {m, n,X ∈ {max (0, n− (T −m)) , · · · ,min (m, n)}} ,

where T is the true population size.

The sample spaces are all possible data sets that the simulations could generate under each of the model assumptions. The sample space for LP.m.bt is nested
within that of LP.mn.bt, which is itself nested within the sample space of LP.bt. Clearly, global and local are relative terms. LP.m.bt is local with respect to LP.bt, but
global with respect to LP.mn.bt.

The sampling distributions for the three estimators are plotted in the figure below. We now have three different confidence intervals. Which is right? Statistics by itself
cannot answer that question. These three intervals represent the uncertainty in the hypothetical repetition of three different experiments. In the type 1 experiment,
with m and n constrained, the only thing that can vary experiment to experiment is the number of marked animals in the final day sample.

In type 2, the number of previously marked individuals is constrained but not the final day sample size. The hypothetical experiment is repeated only for the final day;
varying numbers of individuals as well as varying numbers of marked animals may be captured on the final day. In type 3, the entire hypothetical experiment is
repeated. The number of marked individuals, the number of captured individuals, and the number of marked individuals in the second sample may all vary.

The appropriate interval depends on the kind of uncertainty you are trying to represent. The first interval answers the question: How different the estimators of the
total population could be if someone else replicated the experiment such that the total number of marked individuals and total number of captures are identical to
your experiment? This can happen in a field survey where the total number of marked animals and total number of captures is fixed by design, a priori. These
numbers may depend on the budget the researcher might have for capturing animals for marking and for recapturing.

In some situations, such as camera trap surveys, the total number of marked animals may be fixed by design but the total number of captures, by the nature of the
survey technique, is random. The second interval considers this possibility and allows for the randomness in the number of captures to compute the uncertainty in
the total population size estimator. In the case of fish surveys, the number of fish caught in the traps or by electrofishing for marking is necessarily random and so is
the number of fish in the sample afterwards. In this case, the third interval will be appropriate.

Figure Box 2.1 | Sampling distributions and 95% confidence intervals of total population size estimates for three levels of conditioning in Lincoln Peterson estimates.
The ML estimate for all three models is 249. The confidence 2.5 and 97.5% limits are indicated by the vertical lines dropped from each curve to the x-axis. The
intervals become increasingly shorter as the models (hypothetical experiments) become more constrained. Here, as is generally but not universally the case, the
intervals are completely nested.
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FIGURE 1 | Hypothetical coverage of confidence intervals for evidence. The
strength of evidence is the value of an evidence function relating two models
and a data set. Typical evidence functions are LLR or the difference of
information criterion values, 1ICs. In our worked example (Section 3) we use
the Schwarz information criterion. 1SICRA values greater than 0 indicate
support in the data for the reference model relative to the alternative. These
values are indicated by dots in the figure. The vertical bars indicate confidence
intervals for the strength of evidence. The target for a confidence interval on
the strength of evidence is a penalized scaled divergence difference (see
Section 4.1), loosely this is the expected evidence. By design, a perfect
confidence interval, at say the 95% confidence level, will fail to cover its target
5% of the time. If a confidence interval that misses its target is entirely more
distant from 0 than is its target, we say that it misses distally, otherwise we say
that it misses proximally. We will also speak of the bound of a confidence
interval for evidence that is closest to 0 as the proximal bound.

3. EXAMPLE: UNCERTAINTY IN A
STRUCTURAL EQUATIONS MODELS
ANALYSIS OF POST-FIRE RECOVERY OF
PLANT DIVERSITY

To probe the effectiveness of bootstrapping evidence in
realistically complex problems, we revisit the classic analysis of
Grace and Keeley (2006). These authors used structural equation
modeling to study the impact of landscape, environment, and
community factors on the recovery after fire of shrubland
plant diversity.

A recent article on developing causal models (Grace and
Irvine, 2020) revisits the 2006 study and takes a more moderate
stance than the original paper: “Subsequent SEM studies (Keeley
et al., 2008) have enhanced our confidence in the general
inferences drawn from the original study. That said, we would
not claim that all our parameter values are unbiased causal
estimates without further evidence to support such inferences.”
We believe that had Grace and Keeley had the tools for estimating
the two kinds of evidential uncertainties we have developed
here a much more nuanced understanding could have been
gained—even from the original data—as to which paths were
likely to be supported by future work and which were potentially
non-replicable.

3.1 Example Choice
There are reasons why SEM is growing in influence in
environmental informatics, ecology and evolution. First, SEM
allows for legitimate causal inference in situations both in
observational studies (Grace, 2008; Bollen and Pearl, 2013;
Grace and Irvine, 2020) and where experimental manipulation
has been performed (Grace et al., 2009; Breitsohl, 2019).
In fact, path analysis, the precursor to SEM, was first
developed by Sewall Wright (1934) to expose causal effects
to statistical inference. Second, because it is designed for
estimation of a network of causal effects, SEM is well
suited for analyses of the complex patterns of influence
often found in environmental science, ecology and evolution
(e.g., Grace and Pugesek, 1997). Third, SEM recognizes that
many observables may be recorded with measurement error
(Bollen, 1989). The ability to incorporate measurement error
in an analysis eliminates an important source of bias that
has plagued environmental science, ecology and evolution
(Taper and Marquet, 1996; Cheng and Van Ness, 1999).
Implicit in the incorporation of measurement error is the
ability to consider latent variables (i.e., unobserved, and
potentially unobservable variables) (Grace and Bollen, 2008;
Grace et al., 2010). Fourth, causal paths and latent variables
allow linking scientific theory and statistical analysis in a
particularly perspicuous fashion (Grace and Bollen, 2008;
Grace et al., 2010; Laughlin and Grace, 2019). Because of
these beneficial features, SEM is being utilized in growing
number of applications in environmental informatics, ecology
and evolution. The explosive growth of SEM in ecology is
documented in Laughlin and Grace (2019).

Despite its many advantages for scientific thinking, SEM
does present some inferential difficulties (Tomarken and
Waller, 2003). Information can flow between variables
by multiple pathways. As a consequence, the fit of
alternative models and therefore the evidence between
them can vary considerably with small changes in the
configurations of the data. This uncertainty in evidence
needs to be quantified.

A final reason for the choice of the Grace and Keeley
example is the excellence of the original study. The observations
were collected under the direction of Jon Keeley, while the
analysis was conducted by James Grace. Jon Keeley is a
very experienced empirical ecologist, while Grace has been
a leading proponent the application of SEM to ecological
systems. Both are scientists of great distinction. We do
not seek to cavil at pedestrian research but look to see
what bootstrapping of evidence can add to a well done
scientific analysis.

3.2. Example Description
Keeley et al. (2005) and Grace and Keeley (2006) describe
the data collection in detail. In brief, 90 sites in southern
California were surveyed for 5 years following wildfire. Seven
variables were observed indicating 7 latent variables (see Table 1).
Variables were transformed to generate approximate linear
homoscedastic relationships.

Frontiers in Ecology and Evolution | www.frontiersin.org 9 December 2021 | Volume 9 | Article 679155

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-679155 November 30, 2021 Time: 15:41 # 10

Taper et al. Uncertainty in Evidence Under Misspecification

BOX 3 | Interpreting evidence using confidence intervals.

Figure Box 3.1 | depicts some hypothetical confidence intervals for the strength of evidence. The boundaries for the evidential categories are set as: strong
evidence for the alternative = −kS = –7, prognostic evidence for the alternative = −kp = –4, prognostic evidence for the reference = kp = 4, and strong evidence for
the reference = k p = 7.

In interval 1, the observed evidence (e.g., 1SIC), indicated by the filled oval, is strong and the lower bound for the confidence interval is above the strong evidence
threshold. This evidence is designated strong and very secure (SV)—the reference model is strongly supported as being closer to the generating process than the
alternative and there is almost no chance that sampling variation would upset this identification. In this case, the researcher may reasonably conclude that no further
work is needed regarding model identification in this particular model contrast. Possibly, further work may be indicated to improve parameter estimate precision in
the identified better model.

In interval 2, the observed evidence is above the strong evidence threshold, and the proximal bound is greater than the prognostic evidence threshold. We call this
situation “strong but secure” (SS). This implies that the reference model is strongly supported, and it is unlikely (but plausible) that this is due to sampling variation.
Cautious but optimistic interpretation is indicated, and if possible, more data should be collected to confirm the conclusions.

In interval 3, the observed evidence is above the strong evidence threshold, but the proximal bound is less than the prognostic evidence threshold. We call this
situation “strong but insecure” (SI). This implies that while the reference model is strongly supported, it is uncertain due to sampling variation. Very cautious
interpretation is indicated, and if possible, more data should be collected to confirm the conclusions.

In interval 4, the observed evidence is less than the strong evidence threshold, and the proximal bound is greater than the prognostic evidence threshold. We call this
situation “prognostic but secure” (PS). This implies that while the reference model has only moderate support, it is unlikely that this is due to sampling variation. In
this case, the distal bound is less than the strong evidence threshold. It is likely that both models explain the data nearly equally well, but with a slight edge to
the favored model.

In interval 5, the observed evidence is less than the strong evidence threshold, and the proximal bound is less than the prognostic evidence threshold. We call this
situation “prognostic but insecure” (PI). This implies that the reference model has only moderate support and even this may be due to sampling variation. The primary
implication is that more data is needed either within the context of the current experiment or by combining these results with the results of other experiments.

In interval 6 the evidence is weak and insecure (WI). The models are not differentiated by the data. The researcher should collect more data in order to identify the
models. The researcher should of course recognize that not all data is equally informative and seek data that will distinguish the two models (e.g., Cooper et al.,
2008). Another choice that could be made, particularly if large amounts of data have already been collected, is to decide that both models are adequate for the
intended purposes (Lindsay, 2004; Markatou and Sofikitou, 2019).

Intervals 7, 8, 9, and 10 are reflections of intervals 5, 4, 3, and 2, only in this case they are misleading. The designation C stands for confusing evidence, which is
prognostic evidence for the wrong model. The designation M stands for misleading evidence, which is strong evidence for the wrong model.

Interval 10 is a researcher’s worst case. The evidence is strong, secure and misleading. The researcher should try to avoid this situation both by experimental design
(large sample size, treatments or observations that strongly differentiate between the models) and by analytic design (higher strong and marginal
evidence thresholds).

(Continued)
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BOX 3 | (Continued)
In practice, we do not know if the evidence is misleading or not. For this discussion, we consider “negative” evidence as misleading but in fact, it only indicates that it
supports the alternative model—unless one knows the location of the generating process (see Ponciano and Taper, 2019). Simulations (Section 5.2 and Taper et al.,
2019) show that for global evidence strong but secure misleading evidence occurs very rarely—regardless of whether the model set is correctly specified or
misspecified. For local evidence if the model set is correctly specified, secure misleading evidence is exceedingly rare. However, under model misspecification secure
misleading evidence occurs more frequently, although it is still not common. We present an explicit comparison of global and local inference under correctly specified
and misspecified models in Section 5.2.

TABLE 1 | Descriptions of variables from Grace and Keeley (2006).

Observed variable G&K name G&K Data file name Latent variable G&K name Single character abbrev. TLPD&J Measurement error assumed

Distance from coast Distance Landscape Position L No

Age Age Stand Age A No

Community heterogeneity Hetero Heterogeneity H Yes

Abiotic optimum Abiotic Local abiotic conditions C No

Fire index 1 Firesev Fire severity F Yes

Species/plot Rich Richness R No

Total cover Cover Plant cover P No

3.3. Model Naming Conventions
We will use a model naming convention that indicates latent
variable regression structure. The single character abbreviation
for a variable will be followed by “.” and then by the abbreviations
for the variables it is regressed on. Regressions with different
response variables will be separated by “_.”

If a latent is isolated, that is it is neither a response nor a
predictor in any regression in the model, its character would be
entered in the model name but not followed by a “.” We don’t
consider any such models, because we are picking up the Grace
and Keeley reanalysis mid-stream, after they eliminated a variable
called “Community Type” from their analysis. Alphabetical order
will be imposed so that a path model uniquely determines a
name. Thus the Grace and Keeley best model can be named:
“A.L_C.L_F.A_H.L_P.F_R.CHLP” (see Figure 2 and Table 1).

3.4. Example Reanalysis
Dr. Grace kindly provided the original data set and his original
code (written using R package lavaan). In our reanalysis we
use the R package lava (version 1.6.7). The estimates of the
standardized coefficients from the two packages agree to at
least the 5 decimal places reported by lava. Grace and Keeley
determine their best model based on several factors including
theoretical background, chi-square model adequacy tests,
generalized likelihood ratio tests between nested models,
and inspection of deviations between observed and model
implied covariances. Grace and Keeley note the consistency
of their model identification with identification based on
information criterion.

The strong theoretical relationship between 1ICs, the
difference of information criterion values, and the likelihood
ratio test statistic has been noted before (e.g., Burnham and
Anderson, 2002; Lele and Taper, 2012; Taper and Ponciano,
2016). What differs between the approaches are the assumptions
and warrants that tie the statistics to scientific inference. These
differences can lead to substantive differences in inference from
the same data and essentially the same statistic. With a NP test

FIGURE 2 | The estimated final, simplified model explaining plant diversity.
Arrows indicate causal influences. The standardized coefficients are indicated
by path labels and widths. Weak paths with coefficients of magnitude less
than 0.30 are shown in gray.

you inference is a categorical accept or reject if your p-value
is 0.051, just the wrong side of alpha of 0.05 your reject. If
you have a 1IC of 6.9, you don’t reject it instead you give a
more elaborate discussion: “Well the evidence doesn’t quite reach
our arbitrary strong evidence threshold, but it is very strong
prognostic evidence.” We will return to this in the discussion
(see also Box 1). Here we focus on the impact of uncertainty in
evidence for one model over another given the data on reasonable
scientific inference.
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TABLE 2 | Models compared in our reanalysis of the Grace and Keeley (2006)
structural equation analysis of diversity recovery after fire.

Full name Description

A.L_C.L_F.A_H.L_P.F_R.CHLP GKBM (G&K best model)

A.L_C.L_H.L_P.F_R.CHLP GKBM - F∼A

A.L_F.A_H.L_P.F_R.CHLP GKBM - C∼L

A.L_C.L_F.A_H.L_R.CHLP GKBM - P∼F

A.L_C.L_F.A_P.F_R.CHLP GKBM - H∼L

A.L_C.L_F.A_H.L_P.F_R.CLP GKBM - R∼H

A.L_C.L_F.A_H.L_P.F_R.CHL GKBM - R∼P

C.L_F.A_H.L_P.F_R.CHLP GKBM - A∼L

A.L_C.L_F.A_H.L_P.F_R.HLP GKBM - R∼C

A.L_C.L_F.A_H.L_P.F_R.CHP GKBM - R∼L

A.L_C.L_F.A_H.L_P.F_R.CFHLP GKBM + R∼F. Clarifies G&K
question 4

A.L_C.L_F.A_H.L_P.AF_R.CHLP GKBM + P∼A. Clarifies G&K
question 7

A.L_C.L_F.A_H.L_P.F_R.ACHLP GKBM + R∼A. G&K Model D

A.L_C.L_F.A_H.L_P.FL_R.CHLP GKBM + P∼L. Added because
of covariance residuals

A.L_C.L_F.A_H.L_P.AFL_R.CHLP GKBM + P∼AL. Added
because of covariance
residuals

The left-hand column gives the model’s full name, which indicates the complete
path structure. The right-hand column describes how the model relates to the
Grace and Keeley best model.

3.4.1. Models Considered
Statistical evidence, at least defining the term as in the Royall
(1997), Lele (2004a), Taper and Ponciano (2016), and Brittan
and Bandyopadhyay (2019) tradition, is not unary, but binary:
It measures the support (Edwards, 1992) for one model over
another model that is given by data. The models we compare are
listed in Table 2.

The first model is the Grace and Keeley best model (GKBM).
The next 9 models are deletion models that each differ from
the best model by the absence of a single path. These models
are listed in order (strongest to weakest) of the strength of the
effect in the best model (as measured by the coefficient z-statistic).
Comparison of each of these models with the GKBM will probe
the question of whether the deleted path belongs in “best model.”
The last 5 models are addition models that each differ from the
GKBM by the presence of 1 or 2 paths. Comparison of each of the
addition models with the GKBM probes the question of whether
that/those paths should be included in a “best model.”

3.4.2. Example Reanalysis Results
The results of our reanalysis are presented in Figure 3, which
plots the evidence (1SIC) and its uncertainty for the GKBM
relative to each of the deletion models, and Figure 4, which shows
GKBM evidence and uncertainty relative to the addition models.

The first three model comparisons are rock solid. They all
have strong and secure global evidence and strong and very
secure local evidence. Not only does this data set strongly
favor including these three paths, but replication of the
experiment—in the same environment—will almost always reach
the same conclusion.

The next two comparisons (GKBM - H∼L and GKBM - R∼H)
both have strong and secure local evidence for including their
paths, but globally, they are insecure. We have good reason to
believe that these paths represent real causal effects, but need to
advise researchers seeking to replicate this experiment to increase
sample size to avoid equivocal results.

Then a comparison (GKBM - R∼P) with evidence, both global
and local, that is strong but insecure. Here the global interval
crosses the 0 line. Researchers should consider the possibility that
the path may be weaker than estimated or may be non-existent.

The next two comparisons have barely prognostic evidence
for their paths, but are insecure both globally and locally, with
intervals that substantially overlap the line separating evidence
for one model versus evidence for the other. The final comparison
has positive but weak evidence for inclusion of the path.
It is by definition insecure. The local evidence interval falls
entirely between the two prognostic evidence thresholds. There
is evidence for the path, but it is just a bit more than a toss-up.

Whether or not the last 3 paths should be included in a model
is a judgment call for the reporting researchers based on the costs
both practical and intellectual of including false paths or omitting
true paths. For these deletion paths, a nudge might be given
toward including them because the evidence favors the more
complex model despite the SIC evidence function being used
having a slight bias at small sample size toward compact models.

All five addition models have global evidence that is weak
and insecure but that leans toward the more compact GKBM.
However, all the global intervals overlap the separatrix at 0,
and three of the intervals even overlap the marginal evidence
thresholds for including the paths. The local evidence shifts
slightly further toward the GKBM.

At this sample size, there is no compelling statistical reason
to include any of the addition paths in the “best model,” but
there is also no compelling statistical reason not to. The slight
tilt toward the GKBM may represent nothing more that the
SIC bias toward compact models. It is very hard statistically
to distinguish between the true absence of a path and the
presence of a weak path. It would take a sample size of more
than 1,000 for there to be an expectation of global strong
and secure SIC evidence for the absence of a path even if it
was truly absent. On the other hand, because the coefficient
of variation of local evidence declines at a much faster rate
than that of global evidence (n−1 versus n−1/2) even a modest
increase in sample size may allow local identification of weak
effects. In the case of the Grace and Keeley example the
breadth of the conditional intervals indicates that the sample
size is marginal in a statistical sense—despite the Herculean
effort represented.

Models are single entities, but they are entities built
from components. In our experience, a great deal of insight
into how components function in models can be found by
estimating the evidence for a model including the component
relative to the same model without that component. In
all 14 model comparisons, the weight of evidence tilts
toward the GKBM. We agree with Grace and Keeley that
A.L_C.L_F.A_H.L_P.F_R.CHLP is the “best model” (at least
out of those considered) to describe the structural relationships
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FIGURE 3 | Evidential uncertainty intervals comparing the Grace and Keeley best model with 9 models, each that deletes one of the paths in the GKBM. For each
model comparison, the open circle indicates the observed evidence, the solid error bar indicates the global uncertainty, the dashed error bars show the local
uncertainty. These are approximate 90% confidence intervals based on 4000 non-parametric bootstraps. The strong evidence thresholds are indicated by dot-dash
horizontal limit lines at 7 and -7, while the prognostic evidence thresholds are indicated at dashed limit lines at 4 and -4. Positive values of the 1SICRA indicate
evidence for the GKBM, as the reference model, relative to the alternative model, while negative values indicate evidence for the alternative model relative to the
GKBM. The separatrix between these two regions is the dotted horizontal limit at 0.

FIGURE 4 | Evidential uncertainty intervals comparing the Grace and Keeley best model with 5 models, each that adds one or two paths to the GKBM.

in this data set. Grace and Keeley chose in 2006 to interpret
the empirical results of their study narrowly. “Ultimately,
results and interpretations presented in this paper are based

on the model judged to be the best representation of the data”
(Grace and Keeley, 2006). Here we do disagree with Grace
and Keeley. Our analysis has shown that even within a small
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list of a priori models, drawn from their own back-ground
theory, there are multiple plausible models whose interpretation
should be considered. To interpret only a single best model is
like choosing to use only a parameter point estimate without
considering its uncertainty. It is simple, but over-confidence
can be generated.

4. MATHEMATICAL DEVELOPMENT

In this section, we develop the statistical justification and
estimation algorithms for the confidence intervals for evidence
that we use in this paper. A reader satisfied with a simulation-
based justification could skip to Section 5, at least on first reading.

Different statistical divergences could be used to construct
model adequacy measures and thus evidence functions (see
Lele, 2004a; Markatou and Sofikitou, 2019). Each will have
its own properties, and each could be useful in different
circumstances. In this paper we focus on the Kullback-
Leibler divergence (KLD) as it leads to the information
criteria, evidence functions already in common use. The
treatment of uncertainty for other divergences and evidence
functions should parallel that for the KLD. The mathematical
notation, definitions, and assumptions used in our treatment
are given in Box 4.

Commonly, either confidence or credible intervals are
used to quantify uncertainty in parameter estimates. A very
general method of constructing confidence intervals is
hypothesis test inversion (Casella and Berger, 2002). If
your test is a generalized likelihood ratio test then the set{
θ, 2

(
lm

θ̂

(
x
)
− lmθ

(
x
))
< χ2

p,(1−α)

}
is an approximate

100 (1− α)% confidence interval if θ is of dimension 1 or
confidence region if θ is of dimension> 1 (Pawitan, 2001).

If one is interested in inference on a subset of the parameters
in a multidimensional parameter vector θ, one can partition
the parameter vector as θ = [γ,λ], where γ is a vector of
the parameters of interest, often of dimension 1, and λ is
a vector of all the other parameters. A profile log-likelihood
(for a given γ) can be calculated as lp(γ ; x) = max

λ
lm
(
x; γ, λ

)
,

that is by maximizing over λ. It is argued (Cox and Reid,
1987) that maximization of the profile likelihood leads to
inconsistent estimators of the parameters of interest because it
does not appropriately penalize for the cost of the estimation
of the incidental parameters. Various bias corrections or
penalty terms for the profile likelihood have been suggested
(Pace and Salvan, 2006).

The connection between profile likelihood and model
selection becomes obvious if one considers that the parameter
of interest could be nothing more than an index for the models
considered. In Box 5 we use this connection to develop and
justify global and local uncertainty in the evidence for one
model over another. We point out that these penalties for
parameter estimation are similar to the penalties employed in
information criteria. A general parametric bootstrap approach to
calculating an approximate penalty for the profile likelihood is
described in Pace and Salvan (2006).

4.1. Divergence Difference, Penalized
Divergence Difference, and Evidence
Functions
We start with describing precisely the quantities that we want to
estimate (targets) and their estimators. An estimator is a function
of a random variable and thus describes a probability distribution.
An estimator applied to a particular data set produces an estimate,
which is a realization from the distribution of estimator.

To understand the bias and uncertainty in an estimator, one
needs to compare estimates to estimation targets. For much
inference, the targets are obvious. For evidence (which is an
estimate), the target was not obvious to us and so to understand
the quality of our evidence estimate we begin by first carefully
defining what its target is. Then we describe how one can
obtain the sampling distribution of these estimators, either
asymptotically as was done by Royall (1997, 2000) and Dennis
et al. (2019) or by non-parametric bootstrap as was suggested
by Taper and Lele (2011).

4.1.1. Fully Specified Competing Models
Consider the case where the competing models are fully specified.
In the following, we explicitly define the target quantity, its
estimator (the evidence function) and the estimate (observed
value of the evidence function). As has been discussed in various
papers (Lele, 2004a; Taper and Lele, 2004, 2011; Dennis et al.,
2019), the sample size scaled difference between the divergences
from the true generating mechanism and the two competing
hypothesized mechanisms, namely, 1DPn(g,MR,MA, n) =
2n{K(g,MA)− K(g,MR)} + cn(pA − pR) is of great interest. We
call this the penalized scaled divergence difference (see Box 4,
definition 19). This is an unknown quantity because in practice,
we do not know the true generating mechanism g(.).

In this formulation, because of the sample size multiplier 2n,
1DPn(g,mR,mA, n) converges to ±∞ or 0 as the sample size
increases. We use the above formulation to be consistent with the
discussion in Dennis et al. (2019) and information-based model
selection criteria.

One could, alternatively, standardize the evidence so that it
converges to a constant: 0 if the two models are equidistant from
the true generating model, a positive number if mR is closer to
g(.) or a negative number if mA is closer to g(.) as was done in
Lele (2004a). One can also use other forms of divergences such
as the Hellinger divergence to quantify evidence (Lele, 2004a) to
make it model robust or outlier robust.

Given the data X, a natural estimator of 1DPn(g,mR,mA, n),
termed the evidence function (Lele, 2004a), is a sample sized
scaled difference of the KLD estimators (Box 4, definition
21) 2n{K(g,mA;X)− K(g,mR;X)}. Notice that, with the KL
divergence, the unknown density g(.) gets canceled while taking
the difference and does not need to be estimated explicitly. Hence
the estimate of the sample size scaled divergence difference, under
the KLD, is: Evraw(mR,mA; ĝn,x, x) = −2

(
lmA

(
x
)
− lmR

(
x
))

.
In the following, we will describe the use of non-parametric

bootstrap to calculate a more accurate estimate of the evidence
for the reference model relative to the alternative than the
raw evidence and also to quantify uncertainty in the estimated
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BOX 4 | Mathematical notations, definitions, and assumptions.
The notation in this box is more verbose than commonly used to allow the reader to track fine distinctions among generating process, distribution estimators,
estimated distributions for a particular sample, true parameters, parameter estimators and parameter estimates given a particular sample.

(1) Data are assumed to be suitable for non-parametric bootstrapping. For this paper we further assume that the data are independently
and identically distributed (i.i.d.).

(2) Probability density function (pdf) or probability mass function (pmf) representing the true generating mechanism is denoted g(.). Its cumulative distribution
function (cdf) is denoted as Fg (· ).

(3) Observed data: x = (x1, x2,..., xn), where n denotes the sample size.

(4) Random variables: X = (X1,X2, ...,Xn).

(5) The pdfs/pmfs for reference (R) and alternative (A) models are denoted by mR(.) and mA(.), respectively. For example, mR is N (µ = 5, σ = 1). Note, these are
fully specified models.

(6) If the reference and alternative model are not fully specified, then they represent model spaces denoted MR and MA respectively. In that case each of MR and
MA is a collection of models. For example, MR = N (µ, σ)) with µ in (−∞,∞) and σ in (0,∞).

(7) F(n)g
(
t;X

)
=

1
n
∑n

i=1 I (Xi ≤ t) is the empirical estimator of the cdf of g(.) for a random vector of length n. Here I (A) is the indicator function for event A.
Denote a corresponding numerically smoothed density as gn,X (.).

(8) F̂(n)g
(
t; x
)
=

1
n
∑n

i=1 I (xi ≤ t), the empirical estimate of the cdf of g(.) for an observed vector of length n. Denote a corresponding numerically smoothed
density as ĝn,x (.).

(9) The KLD between two specified continuous models, where the reference model is mR is K(mR,mA) =
∫
(log (mR(x))− log (mA(x)))mR(x)dx. In general, for

any two models (discrete, continuous or piecewise continuous) we write K(m1,m2) =
∫
(log (m1(x))− log (m2(x)))dFm1 (x) .

(10) The KLD orthogonal projection of a probability distribution, such as a fully specified model, s (.) onto a model space M is m∗s = arg min
m∈M

K(s (.) ,m) (see

Figure 3 in Ponciano and Taper, 2019). This model is the closest approximation to s(.) in the model space M.

(11) If s (.) ∈ M⇒ m∗s (.) ≡ s (.). If the generating process is in either MR or MA that is if either g (.) ∈ MR or g (.) ∈ MA then the model set {MR,MA} is considered
correctly specified, as in the foundations of much classical statistics (e.g., Neyman and Pearson, 1933; Wilks, 1938; Wald, 1943).

(12) The log-likelihood function for the observed data, x, under g(.) is lg
(
x
)
=
∑n

i=1 log (g (xi))

The log-likelihood function for the observed data under a model m(.) is lm
(
x
)
=
∑n

i=1 log (m (xi)). m̂x(.) is the model with parameter values that maximizes
lm
(
x
)
.

(13) Conceptually, m̂x(.) is the same model as m∗ĝn,x
. The first notation is more familiar, the second emphasizes that the maximum likelihood model is a projection

of the model to the empirical density. Asymptotically these estimates will be identical, but there will be slight numerical differences at finite sample size due to
the smoothing in ĝn,x .

(14) The KLD estimator of the divergence of a model, m, from the generating process, g is given as

K(ĝn,X ,m;X) =
∫

log
(
ĝn,X (t)

)
dF(n)g

(
t;X

)
−
∫

log (m(t))dF(n)g
(
t;X

)
= Sĝn,X

,ĝn,X
−Sĝn,X

,m

where Sĝn,X ,ĝn,X
is the neg-self-entropy of the generating process and Sgn,X ,m is the neg-cross-entropy from the generating process to the model m. Note,

an estimator is the function of a random variable (i.e., X ) that returns an estimate for a particular realization of the random variable.

(15) The KLD estimate of the divergence of a model, m, from the generating process, g:

K(ĝn,x,m; x) =
∫

log
(
ĝn,x(t)

)
dF̂(n)g

(
t; x
)
−
∫

log (m(t))dF̂(n)g
(
t; x
)
= Sĝn,x

,ĝn,x
−Sĝn,x

,m .

where Sĝn,x ĝn,x
is the neg-self-entropy of the empirical distribution.

(16) The KLD projection estimator of the divergence of a model space, M, from the generating process, g: K(ĝn,X ,M;X) = Sĝn,X ,ĝn,X
− Sĝn,X ,m∗ĝn,X

(17) The KLD projection estimate of the divergence of a model space, M, from the generating process, g: K(ĝn,x,M; x) = Sĝn,x ,ĝn,x
− Sĝn,x ,m∗ĝn,x

(18) One estimate for K(ĝn,x,M; x) is Sĝn,x ĝn,x
− lm̂(x), see discussion in definition (13). Bias correction for this estimate is the goal of information criteria. We

employ the consistent family of bias correction terms cnp, where cn is a function of n growing strictly between loglog(n) and n. And, p is the parametric
dimension of M (Nishii, 1988).

(19) The global penalized scaled divergence difference target: 1DPn(g,MR,MA, n) = 2n{K(g,MA)− K(g,MR)} + cn(pA − pR) (see definition 16). The target
is the quantity for which we attempt to find both a central estimate and an uncertainty measure (see discussion in Section 4.1). Note that for fully specified
model comparisons, the penalty term is 0, and 1DPn(g,mR,mA, n) = 2n{K(g,mA)− K(g,mR)}

(20) The local penalized scaled divergence difference target, 1dPn(g,MR,MA, x) = 2n{K(g,MA, x)− K(g,MR, x)} + cn(pA − pR) (see definition 17).

(21) The global penalized divergence difference estimator, 1DPn(ĝn,X ,MR,MA,X) = Eĝn,X

(
2n{K(ĝn,Y ,MA,Y)− K(ĝn,Y ,MR,Y)} + cn(pA − pR)

)
. Note that inside

the expectation Y is a random vector drawn from ĝn,X .

(22) The local penalized divergence difference estimator, 1dPn(ĝn,X ,MR,MA, x) = Eĝn,X

(
2n{K(ĝn,Y ,MA, x)− K(ĝn,Y ,MR, x)} + cn(pA − pR)

)
. Note that inside the

expectation Y is a random vector drawn from ĝn,X .

(23) The global evidence estimate,
EvG

(
MR,MA; ĝn,x, x

)
= Eĝn,x

(
2n{K(ĝn,Y ,MA,Y)− K(ĝn,Y ,MR,Y)} + cn(pA − pR)

)
= Eĝn,x

(
−2{lm̂AY

(
Y
)
− lm̂RY

(
Y
)
} + cn(pA − pR)

)
. Note that inside the expectation Y is a

random vector drawn from ĝn,x and that the maximum likelihood estimate, m̂x , has been substituted for m∗ĝn,x
(see definitions 13 and 18). Both the estimated

models and the data from which the likelihoods are calculated are random. Thus, variation in EvG is due to both variation in Y and to variation in the estimates
of m̂AY

and m̂RY
. Non-parametric bootstrap will be used to estimate the expectation and its uncertainty estimation and for further bias reduction. Positive

values for evidence indicate that the reference model is supported over the alternative model (see discussion Box 1).

(Continued)
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BOX 4 | (Continued)

(24) The local evidence estimate,
EvL

(
MR,MA; ĝn,x, x

)
= Eĝn,x

(
2n{K(ĝn,Y ,MA, x)− K(ĝn,Y ,MR, x)} + cn(pA − pR)

)
= Eĝn,x

(
−2{lm̂AY

(
x
)
− lm̂RY

(
x
)
} + cn(pA − pR)

)
.

Note that inside the expectation Y is a

random vector drawn from ĝn,x and that the maximum likelihood estimate, m̂x , has been substituted for m∗ĝn,x
(see definition 18). Here the estimated models

are random, but the data from which the likelihoods are calculated are fixed. Thus, variation in EvL is due only to variation in the estimates of m̂AY
and m̂RY

.

Non-parametric bootstrap will be used to estimate the expectation and its uncertainty estimation and for further bias reduction. Positive values for evidence
indicate that the reference model is supported over the alternative model (see discussion Box 1).

(25) The raw evidence,
Evraw(MR,MA; ĝn,x, x) = 2n{K(ĝn,x,MA, x)− K(ĝn,x,MR, x)} + cn(pA − pR)

≈ −2{lm̂Ax

(
x
)
− lm̂Rx ,

(
x
)
} + cn(pA − pR)

. Note that no bootstrapping is done nor expectation taken.

This is an information criterion as generally used.

evidence as was suggested in Taper and Lele (2011). Box 6 lists an
explicit algorithm for this bootstrap.

Instead of the LLR as the estimated evidence, we use the
expectation (mean) of the density function of the bootstrap
evidence as the estimated evidence. This could be estimated as
the bootstrap average evidence. For a slight increase in accuracy,
we calculate the expectation by numerically integrating over an
estimated density function for the bootstrapped evidence. We use
the R package kde1d (version 1.0.2, Nagler and Vatter, 2019),
which uses univariate local polynomial(log-quadratic) kernel
density estimators. Our validation tests support the literature
(Geenens and Wang, 2018) on the strength of this method.
We find that confidence bounds are located more accurately
with kde1d quantiles than with raw bootstrap quantiles, BCa
quantiles, or with calibrated (double bootstrap) quantiles (see
Efron and Tibshirani, 1993 for description of these methods) and
that estimated distributions are more accurate (in integrated
squared error) than standard kernel density estimation.

We note a few important features of the bootstrapping
procedure described in Box 5. When the models are fully
specified the log-likelihood ratio is a U-statistic (Serfling, 1984)
and hence it is an unbiased estimator of the target quantity.
However, divergences other than KLD may lead to biased
estimators of the target quantity. In which case, the mean of
the bootstrap distribution is a bias corrected estimate of the
target quantity. Also, if the models are not fully specified,
it is well known that the log-likelihood ratio is a biased
estimator of the target quantity (Akaike, 1973). The mean of the
bootstrap distribution of the log-likelihood ratio corrects for bias
(Ishiguro et al., 1997).

We do not discuss the case of fully specified models any
further but move on to the interesting case where parameters
need to be estimated.

4.1.2. Competing Models With Unknown Parameter
Values
Next, we consider the problem of model selection where there
are unknown parameter values that need to be estimated.
When we are dealing with model selection, the quantity
of interest is scaled divergence difference penalized for the
complexity of the models. We consider global penalized scaled
divergence differences of the form: 1DPn(ĝn,X,MR,MA, n) =
Egn,X

(
2n{K(ĝn,Y ,MA,Y)− K(ĝn,Y ,MR,Y)} + cn(pA − pR)

)
,

where cn is a function of the sample size that converges to infinity

at the rate strictly between log(log(n)) and n (Nishii, 1988), pR
and pA are the number of unknown quantities (parameters)
in the models that are estimated using the data. For example,
for the Schwarz Information Criterion (SIC), cn = log(n).
This constraint guarantees that the information criterion will
be a consistent criterion; that is, asymptotically it will lead
to identifying the model in the model space that is closest to
the true generating mechanism. We include the multiplier
2 to keep it consistent with common information criteria.
We emphasize again that, the target, 1DPn(g,MR,MA, n), is
unknown in practice.

Assuming that the observations in the data are independent,
identically distributed random variables, using the SIC
(a.k.a. Bayesian Information Criterion or BIC) sample size
correction, and using the maximum log-likelihood as an
estimator of the KLD of a model to the generating process,
leads to the evidence function EvG

(
MR,MA; ĝn,x, x

)
≈

Eĝn,x

(
−2{lm̂AY

(
Y
)
− lm̂RY

(
Y
)
} + cn(pA − pR)

)
, where Yi ∼

ĝn,x (see definition 23 Box 4), and m̂RY
and m̂AY

are those models

in MR and MA that are closest to F̂(n)g (.), the empirical CDF based
on the data Y = (Y1,X2, ...,Yn), a random vector of length n
from ĝn,x. Note that inside the expectation Y is a random vector
drawn from ĝn,x and that the maximum likelihood estimate,
m̂, has been substituted for m∗ (see definition 18). Variation in
EvG is due to variation in m̂AY

, m̂RY
, and Y. We calculate the

expectation by numerically integrating over an estimated density
function for the bootstrapped 1SICRAs. We use the R package
kde1d for the density estimation. Figure 5 presents a schematic
of this development.

We point out that, except for the nuance of kernel density
smoothing, the algorithm we describe above for EvG is the
EIC algorithm of Ishiguro et al. (1997) applied to 1ICs rather
than directly to log-likelihoods. Kitagawa and Konishi (2010)
point out that the bootstrap bias correction can be applied
to any functional, not just the log-likelihood. The use of the
expectation of the sampling distributions of1ICs, which already
contain an analytic bias correction, adds another layer of bias
correction. Accordingly, the evidence should be 3rd order
accurate (Kitagawa and Konishi, 2010).

Similarly, the local evidence function EvL
(
MR,MA; ĝn,x, x

)
is an estimate of the local penalized scaled
divergence difference, 1dPn(gn,X,MR,MA, x) =
Egn,X

(
2n{K(gn,Y ,MA, x)− K(gn,Y ,MR, x)} + cn(pA − pR)

)
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BOX 5 | Adjusted profile likelihood for model selection inference.
Readers can see Meeker and Escobar (1995) for a brief introduction to profile likelihood in the context of confidence interval construction and Pierce and Bellio
(2017) for a substantial review of practical likelihood adjustments. A gentle introduction to model selection through information criteria can be found in Anderson
(2008), with more technically robust discussions in Burnham and Anderson (2002) or Konishi and Kitagawa (2008).

A general parametric bootstrap approach to calculating an approximate penalty for the profile likelihood is described in Pace and Salvan (2006) and outlined below.

Let Mϕ,ϕ = 1,2, ...,S denote S distinct model spaces. The goal of model selection is to use the data to select the best model space. The form of the best model
space is used to draw various statistical and scientific inferences about the generating mechanism.

First, we show that model selection procedure can be looked upon as a profile likelihood estimation procedure. Let {θ1, θ2, ..., θS} denote the parameters for the
respective model spaces (M1,M2, ...,MS). Denote the dimension of θϕ by pϕ.

A universal model space, that is simply a union of the model spaces, may be written as M = {f(x;ϕ, θϕ),ϕ = 1,2, ...,S}. In this notation, f(x;1, θ 1) indicates the
parametric form of the probability model in the first model space, say LogNormal(µ, σ2), f(x;2, θ2) denotes the parametric form of the probability model in the
second model space, say Gamma(µ,φ), and so on. The parameter ϕ, which is a discrete parameter, is simply an index for the model space. Thus, model selection
can be viewed as selecting a particular value of ϕ. In model selection problem, the index parameter ϕ is of interest and model parameters θϕ are the incidental

parameters. The profile likelihood of the index parameter ϕ can be written as: lp(ϕ, θ̂ ϕ; x) = max
θ ϕ

∑n
i=1 log f(xi;ϕ, θ ϕ ).

In the familiar example of the maximum likelihood estimator of the variance σ2 in the multiple linear regression model Yi = β0 + β1X1i + β2X2i + ...+ βpXpi + εi where

εi ∼ N(0, σ2) independent, σ̂2
=

1
n
∑n

i=1

(
yi − β̂0 + β̂1x1i + β̂2x2i + ...+ β̂pxpi

)2
. This is a biased estimator and bias is pronounced when the number of covariates is

large. A bias corrected profile likelihood yields the usual unbiased estimator with the divisor (n− p− 1), instead of n. We lose (p+ 1) degrees of freedom because
we spend some of the information in the data to estimate the nuisance parameters (β0, β1, ..., β p).

We describe the Pace-Salvan approach for the general profile likelihood case where the parameter of interest may or may not be discrete. To reflect this generality,
for the description of the Pace-Salvan approach, we make a slight change in the notation. We use γ for the parameter of interest, λ for the incidental parameters and
h(.) denotes the parametric probability function presumed to be the data generating mechanism.

Let X ∼ h(., γ,λ). Let the parameter of interest, γ, be of dimension 1 and the nuisance parameter λ be a vector of any dimension that does not depend on the
sample size. Let x = (x1, x2, ..., xn) be a random sample of size n from h(., γ,λ). The log-profile likelihood for γ is defined as lp(γ; x

−
) = max

λ

∑n
i=1 log(h(γ,λ; xi)) .

Model selection based on the maximum of this profile likelihood would correspond to selecting the model space that maximizes the log-likelihood but without any
penalty for the number of parameters in the model. This procedure is known to lead to what is termed an inconsistent model selection procedure. The reason for the
inconsistency is that this profile likelihood is a biased estimator of the expected Kullback-Leibler divergence (Akaike, 1973; see discussion in Ponciano and Taper,
2019). The inconsistency of and the bias correction used in information-based model selection bears strong similarity to the inconsistency and bias correction in the
profile likelihood estimators (e.g., Severini, 2000; Pace and Salvan, 2006) suggested in a very different context.

Following Pace and Salvan (2006), the adjusted profile likelihood, adjusted for the effects of estimation of the nuisance parameter λ, can be computed, assuming the
presumed model is the true generating mechanism, using parametric bootstrap as follows:

(1) Estimate the full parameter vector (γ̂, λ̂ ).

(2) For each bootstrap iteration b ∈ {1, · · · ,B}

(a) Generate a random sample of size n from h(.; γ̂,λ̂) denoted by xb = (xb,1, ..., xb,n).

(b) For these new data and for a fixed value of γ, obtain λ̂b(γ) by max
λ

∑n
i=1 log(h(γ,λ; xb,i)).

(3) Compute the simulation adjusted profile likelihood as: lSA(γ; x) = 1
B

∑B
b=1

∑n
i=1 log(h(γ, λ̂b(γ); xi)). We point out specifically that the likelihood is evaluated

for the original data x but with the parameters (γ, λ̂b(γ)) that are estimated using the bootstrap data.

Pace and Salvan (2006) suggest using lSA(γ; x), instead of lp(γ; x) to conduct statistical inference for γ, the parameter of interest. Most importantly, they use
sophisticated mathematics to show that the adjustment achieved by lSA(γ; x) is locally (conditionally, post-data, post-experiment) appropriate. Note that following
Efron and Tibshirani (1993) description of bootstrap bias correction, one may use lA(γ; x) = 2lp(γ; x)− lSA(γ; x). It follows from the results in Section 3.4 of Pace and
Salvan (2006) that these two versions are equivalent up to O(n−1) and that the difference between these central estimates is small compared to the uncertainty. We
use the mean of the bootstrap distribution as our central estimate to be consistent with both Pace and Salvan (2006) and Kitagawa and Konishi (2010). There is
reason to believe that the median of the bootstrap distribution might have superior theoretical properties (De Blasi and Schweder, 2018), but we will pursue this
in another paper.

We point out that these penalties to the profile likelihood for parameter estimation are similar to the penalties employed in information criteria. In the information
theoretic literature, non-parametric bootstrap bias corrections have been developed as the extended information criterion (EIC) (Ishiguro et al., 1997; Konishi and
Kitagawa, 2008; Kitagawa and Konishi, 2010). There are two important, differences between the basic (EIC) and the Pace-Salvan adjusted profile likelihood. First,
EIC uses non-parametric bootstrap whereas Pace and Salvan use parametric bootstrap. The use of non-parametric bootstrap relaxes the assumption that the
parametric model is the true generating mechanism. Model misspecification is built into the EIC correction. And second, bias correction in EIC is a global
(unconditional, pre-data, pre-experiment) adjustment, averaging over the variation from one experiment to other, whereas the Pace-Salvan adjustment is a local
(conditional, post-data, post-experiment) adjustment that evaluates the likelihood at the observed data x but is averaged over variation of the incidental parameter
estimates from one bootstrap sample to the other.

The bias correction for the EIC can be decomposed into three components: D1, D2, D3 (Kitagawa and Konishi, 2010). One component, D2, has expectation 0 and is
discarded in the EIC2, the variance reduced form of the EIC. The EIC bootstrap bias correction can be applied not just to the likelihood of the data, but to any
functional of the data. Some algebra on equations 44 and 51 of Kitagawa and Konishi (2010) shows that
EvL

(
MR,MA; ĝn,x, x

)
= EIC2

(
1SICRA

(
x
))
+ D1

(
1SICRA

(
x
))

. We have found numerically that D1
(
1SICRA

(
x
))

is a small term that appears to have mean at or near
0, at least under the conditions that we have investigated. The SIC includes an analytic bias correction to the likelihood accounting for the number of parameters
estimated. Thus, that D1

(
1SICRA

(
x
))

is small in these cases does not mean that D1 is always unimportant, just that we are in a region of model space where the
analytic bias correction works well. Central estimates for evidence and uncertainty intervals could be based on the entire EIC2. We will explore these
connections elsewhere.

(Continued)
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BOX 5 | (Continued)
The Pace-Salvan adjusted profile likelihood, the EIC and the EIC2 use the bootstrap distribution only to compute the bias correction factor. We stress the use of the
entire bootstrap distribution to quantify uncertainty in the evidence. A non-parametric bootstrap procedure similar to the Pace-Salvan approach yields local
uncertainty while a bootstrap similar to the EIC can give us global uncertainty.

(see Box 4 definition 22), and EvL
(
MR,MA; ĝn,x, x

)
≈

Eĝn,x

(
−2{lm̂AY

(
x
)
− lm̂RY

(
x
)
} + cn(pA − pR)

)
(see Box 4

definition 24). The difference between the global and local is that
in the calculation of the global evidence the observed data, x,
are considered as a realization of a random vector, X, both in
the estimation of the models to be compared and in the data on
which they are compared. While in the local evidence, the data
vector is considered random in the estimation of the models but
fixed in the data on which they are compared.

It is well established in statistics that providing an estimate
of an unknown quantity is not sufficient; one must provide
uncertainty associated with such an estimate. We use aleatory
probability to quantify this uncertainty (Lele, 2020a). In
quantifying the pre-experiment uncertainty in evidence, we ask
the question: How variable would the evidence be if we were to
repeat the experiment? This is represented by the global (pre-
experiment) sampling distribution of the evidence function. This
distribution does not depend on the particular data set in hand.

When the competing models are fully specified and the
reference model is the true model, Royall (1997, 2000) used
the asymptotic Normal distribution of the LLR to approximate
the sampling distribution of the evidence function and calculate
the error probabilities. In Dennis et al. (2019), we derived
the asymptotic distributions of the evidence function when the
competing models are not fully specified and the true model is not
part of the competing model spaces to approximate the sampling
distribution and compute the error probabilities.

4.2. Uncertainty in Evidence
An important element common to all of our bootstrap
procedures is that the complete evidence functions are the
objects bootstrapped, not the component divergences. Thus, if
the difference of information criterion values is the evidence
function used, such a bootstrap will produce a single distribution
of 1ICs rather than two distributions of IC values. This
is necessary because the geometry of model misspecification
(Dennis et al., 2019; Ponciano and Taper, 2019, see also Table 3)
can create covariances (positive and negative) between the
component divergences. These need to be captured by a bootstrap
for it to accurately reflect the uncertainty in evidence. The
non-parametric bootstrap method for the two cases described
above is as follows.

4.2.1. Global Uncertainty in Evidence for the Fully
Specified Models
Notice that in the bootstrap procedure in Section 4.1.1, we
are bootstrapping the difference in the log-likelihood jointly
and not each component separately. Evidence, innately, is
a comparison between two quantities. Clearly uncertainty in
evidence involves not just the variances of each component

but also covariance between them. The uncertainty reflected
in the bootstrap distribution accounts for the covariance
also. Thus, if the two models are positively correlated with
each other, the uncertainty is reduced whereas if they are
negatively correlated, the uncertainty is higher than the sum of
variances. This, thus, takes into account the geometry of the
model spaces appropriately, even when the models are fully
specified. The quantiles of the smoothed bootstrap density of
Evraw (mR,mA; ĝn,x, xb

)
give us confidence intervals for evidence

(see Box 6 for an explicit algorithm).

4.2.2. Global Uncertainty in Evidence for Model
Spaces With Unknown Parameter Values
Bootstrapping can also be used to obtain global confidence
intervals for evidence with estimated parameters. The
only difference is that the quantity bootstrapped is
Evraw

G (MR,MA; ĝn,x, xb), which is, in this paper, a difference of
information criterion values (see Box 6 for an explicit algorithm).

4.2.3. Local Uncertainty in Evidence
Lele (2020a) reviewed the philosophical problems associated
with global (pre-experiment) uncertainty and discussed the use
of local (post-experiment) uncertainty in the context of linear
regression. To recap, suppose we have only one covariate and we
are fitting a linear regression through origin model. That is, the
data are (xi, yi), i = 1, 2, ..., n and we fit the model Yi = βXi +

εi where εi ∼ N(0, σ2) are independent, identically distributed
random variables. The maximum likelihood estimator of β is,
β̂ =

∑
YiXi

/∑
X2

i .
The question is: what is the variance of β̂? If we consider the

covariates to be random (this is the case when the experiment
is not a designed experiment but an observational study),
then var(β̂) = σ2E

(
1
/∑

X2
i
)
. If Xi ∼ N(0, 1), then var(β̂) =

σ2/(n− 2). This variance, which we term the global variance, is
sometimes called an unconditional or pre-data variance. On the
other hand, if we consider the covariates to be fixed, as is the case
in designed experiments, var(β̂|x1,x2, ..., xn) = σ2/

{∑
x2

i
}

. This
variance, which we call the local variance, is sometimes called the
conditional or post-data variance.

The conditional variance is the variance most ecologists use
when conducting regression analysis. Notice that conditional
variance depends on the configuration of covariates the
researcher observes in their particular data set. If the covariate
values are highly dispersed, the slope is extremely well estimated;
on the other hand, if the observed covariates values are not
very different from each other, the slope is estimated with
large uncertainty.

The local (conditional) variance makes intuitive sense: good
data, strong inference; bad data, weak inference. It is argued
(e.g., Goutis and Casella, 1995) that the global (unconditional)
inference does not reflect this differentiated inferential value of
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BOX 6 | Bootstrap algorithms for global and local evidence uncertainty.
All of the bootstraps described in this box can be performed using the R function KKICv, which we supply in Supplemental Material.

Evidence uncertainty for specified models:

(1) Obtain a random sample of size n with replacement from the original sample. This bootstrap sample is denoted by xb = (xb1, xb2, ..., xbn).

(2) Evaluate the evidence at the bootstrap sample, namely, Evraw (mR,mA; ĝn,x, xb
)
= −2

(
lmA

(
xb
)
− lmR

(
xb
))

.

(3) Repeat steps 1 and 2 B times and accumulate to get the set of results {Evraw(mR,mA; ĝn,x, xb),b = 1,2, ...,B} .

(4) Estimate the density function of the {Evraw(mR,mA; ĝn,x, xb)} in 3). Quantiles of this density yield confidence intervals for the evidence.

(5) Calculate Ev(mR,mA; ĝn,x, x) as the expectation (mean) of the estimated density from step 4.

Global evidence uncertainty estimation:

(1) Obtain a simple random sample of size n with replacement from the observed data x. Let us denote this by xb = (xb,1, xb,2, ..., xb,n).

(2) Based on this bootstrap data, estimate the model parameters for each model space. Let us denote these models by m̂R,b and m̂A,b. These are projections
of the empirical CDF of the bootstrap data onto the corresponding model spaces.

(3) Compute and store Evraw(MR,MA; ĝn,xb
, xb) = −2{lm̂A,xb

(
xb
)
− lm̂Rxb,

(
xb
)
} + cn(pA − pR). The smoothed density of

Evraw(MR,MA; ĝn,x, xb), b = 1,2, ...,B is the bootstrap estimate of the sampling distribution of Evraw(MR,MA; ĝn,xb
, xb).

(4) Quantiles of the smoothed density of Evraw(MR,MA; ĝn,xb
, xb) give us confidence intervals for evidence.

(5) Calculate EvG(MR,MA; ĝn,x, x) as the expectation (mean) of the estimated density from step 4.

Local evidence uncertainty estimation:

(1) Generate a random sample with replacement and of size n from the observed data. Let us denote this by xb = (xb,1, xb,2, ..., xb,n).

(2) Re-estimate the parameters using the bootstrap sample. Let us denote them by m̂R,b and m̂A,b.

(3) Compute Evraw(MR,MA; ĝxb
, x) = −2{lm̂Axb

(
x
)
− lm̂Rxb

(
x
)
} + cn(pA − pR).

(4) Use the quantiles of the smoothed bootstrap distribution of Evraw(MR,MA; ĝxb
, x) to quantify uncertainty of the strength of local evidence.

(5) Calculate EL(MR,MA; ĝn,x, x) as the expectation (mean) of the estimated density from step 4

We find it remarkable that a non-parametric bootstrap can be used to quantify local/conditional/post-data uncertainty. We explained how this occurs in definitions 23
and 24 in Box 4, but the point is important enough that we reiterate here in the comparison of bootstrap algorithms. The key is to realize that for estimated models
the data are used in two fashions: first to estimate the parameters for each of the models, and second to calculate the strength of evidence for one model over
another. Compare step 3 of the global and local bootstraps. The global bootstrap generates a large number of alternative data sets and for each iteration uses the
same bootstrapped data to both estimate the models and calculate the evidence. On the other hand, the local bootstrap while also bootstrapping the data and
reestimating models based on the bootstrapped data, only uses the original data for calculating the evidence. There is a relevant subset involved. It is the original
data. Thus, as we say in the paper, the local bootstrap represents uncertainty in evidence due to uncertainty in model estimation and does not include
sampling variation.

the observed data appropriately. Even if the researcher happens
to have good, dispersed covariates, the global variance does not
recognize that happy event and increases the variance because
the researcher, in another replication of the experiment could
have observed less dispersed covariates and vice versa. We
note that the pairwise resampling used in bootstrap inference
for regression gives the unconditional variance and is robust
against mean as well as error structure misspecification. On the
other hand regression bootstrap based on residuals provides
conditional inference but is only robust against error model
misspecification (Efron and Tibshirani, 1993).

For local uncertainty, the sample space over which the
variation is considered is a subset of the total sample space. This is
called a “relevant subset” (Buehler, 1959). Such a relevant subset
is often determined using an ancillary statistic. An ancillary
statistic is a function of the data whose distribution does not
depend on the parameters. There are, often, multiple ancillary
statistics (Basu, 1964; Pena et al., 1992) and hence relevant subsets
are not necessarily unique. In our opinion, the appropriateness
of the relevant subset is determined based on the type of
future experimental replication one envisions. Different future
experiments determine different relevant subsets as was the case
in the Mark-Capture-Recapture example in Box 2.

It has been argued that local (post-experiment, post-data,
conditional) confidence intervals are preferable as the measure
of uncertainty because they reflect the informativeness of the
data at hand appropriately. If the data are highly informative, the
local confidence intervals are shorter than the global confidence
intervals and if the data are not informative, the local confidence
intervals appropriately are wider than the global confidence
intervals. Again, this argument hinges on the model being
correctly specified.

Some august statisticians (e.g., Royall, 2004) argue the local
interval is the only one that should be used irrespective of the
design because design is an ancillary statistic and has no impact
on the inference once the data are obtained. If the data are
highly informative either by design or by chance, we should be
quite confident about our estimate of the total population size,
irrespective of what other experimenters might observe. It can
be shown (see review in Lele, 2020b) that prediction of a new
observation based on local uncertainty is more accurate than
prediction based on global uncertainty. However, this result also
depends on correct model specification.

On the other hand, other equally august statisticians (e.g.,
Cox, 2004 in his discussion of Royall, 2004) claim design should
play a role in uncertainty quantification. We agree with this
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FIGURE 5 | A schematic indicating how an evidence function relates to its global target. See supplement for a similar figure for local evidence. The principal
differences between the figures are that for global evidence the target does not (and must not) depend on the data while for local evidence the target does (and
must). Reflecting this difference, the global evidence function resamples the observed data to calculate likelihoods while the local does not.

latter opinion on the importance of design. Both because the
interpretation of uncertainty intervals should depend on the
potential type of the future experimental replication, and thus so
should the choice of the ancillary statistics or relevant subsets.
And because, as we show in Section 5.2, the accuracy of the
local interval depends on correct model specification to a greater
degree than does the global.

4.2.4. Local Uncertainty When Comparing Two Model
Spaces
Local evidence uncertainty in the comparison of model spaces
is calculated similarly to global evidence uncertainty. Data
sets are repeatedly reconstructed by bootstrapping the original
data. With each bootstrapped, data set model parameters for
both reference and alternative models are reestimated, and an
evidence value comparing the models is calculated. The critical
distinction between global and local uncertainty is that in the
local calculations the likelihood for each bootstrapped model is
evaluated using the original data not the bootstrapped data (see
Box 6 for an explicit algorithm).

In Section 5, we use simulations to study the coverage
properties of the global and local sampling distributions. Both
the cases of linear regression and structural equation models
are investigated.

5. SIMULATION VALIDATION

If new statistical approaches are proposed, the scientific
community has a legitimate expectation that they will be

validated both mathematically, and computationally (Devezer
et al., 2021). For a procedure that generates confidence intervals,
whether global or local, to be a legitimate frequentist procedure,
they need to cover/capture their targets at least at the specified
level (Casella, 1992). The fundamental difference between global
and local inference is that a global target cannot depend on the
data at hand, while a local target must depend on the data at hand.

Globally we want our intervals to cover the global penalized
scaled divergence difference: 1DPn(gn,X,MR,MA,X) =
Egn,X

(
2n{K(gn,Y ,MA,Y)− K(gn,Y ,MR,Y)} + cn(pA − pR)

)
.

Locally we want our intervals to cover the local penalized
scaled divergence difference: 1dPn(gn,X,MR,MA, x) =
Egn,X

(
2n{K(gn,Y ,MA, x)− K(gn,Y ,MR, x)} + cn(pA − pR)

)
.

For the Kullback-Leibler divergence, this is approximately
−2{lm̂Axb

(
x
)
− lm̂Rxb

(
x
)
} + cn(pA − pR), the penalized scaled

LLR for the observed data under the best approximating models
in the two competing spaces to the true generating mechanism.
We note this is identical to what is considered the target
likelihood in the general profile likelihood literature, e.g., Section
3.1 of Pace and Salvan (2006).

5.1. Global and Local Coverages in
Alternate Model Space Topologies
There are 14 possible topologies for a reference model space,
an alternative model space and a generating process. The model
spaces compared can be nested, overlapping, or disjoint. If the
model comparison is correctly specified, the generating process
will be in at least one of the model spaces. If the comparison
is misspecified then the generating process will be in neither
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TABLE 3 | The behavior of our global and local uncertainty procedures in all 14 possible model specification topologies.

Case g location Asymptotic
distribution

Exemplar G par Global
coverage

Global
length

mean (SD)

Local
coverage

Local length
mean (SD)

95%/90% 95%/90% 95%/90% 95%/90%

1 Chi-square Ev(g = m001 ,MR = M001 , MA = M011 ;x) 0.00
0.00
0.15

0.00
0.00

8.18 (3.67)
6.48 (3.16)

0.99
0.97

6.66 (1.17)
4.90 (0.86)

2 Non-central chi-square Ev(g = m011 , MR = M001 ,
MA = M011 ;x)

0.00
0.30
0.15

0.95
0.88

22.79 (7.42)
19.06 (6.29)

0.98
0.95

8.12 (1.39)
6.03 (1.00)

 

3 Weighted sum of
chi-square

Ev(g = m010 , MR = M110 ,
MA = M011 ;x)

0.00
0.30
0.00

1.00
1.00

13.75 (4.03)
10.58 (3.41)

0.99
0.97

10.94 (1.37)
7.84 (0.95)

4 Normal Ev(g = m110 , MR = M110 ,
MA = M011 ;x)

0.60
0.30
0.00

0.95
0.90

44.89 (5.91)
37.62 (4.97)

0.98
0.94

13.29 (1.4)
9.90 (0.97)

5 Normal Ev(g = m011 , MR = M110 ,
MA = M011 ;x)

0.00
0.30
0.15

0.98
0.93

18.23 (5.71)
14.51 (4.96)

0.98
0.96

11.12 (1.35)
8.02 (0.95)

 

6 Normal Ev(g = m110 , MR = M110 ,
MA = M001 ;x)

0.60
0.30
0.00

0.96
0.92

48.00 (5.53)
40.25 (4.66)

0.97
0.93

14.23 (1.42)
10.69 (1.01)

 

7 Normal Ev(g = m001 , MR = M110 ,
MA = M001 ;x)

0.00
0.00
0.15

0.95
0.85

20.67 (5.55)
16.56 (4.78)

0.99
0.96

12.9 (1.36)
9.53 (0.98)

 

8 Weighted sum of
chi-square

Ev(g = m111 ,MR = M001 , MA = M011 ;x) 0.05
0.05
0.15

0.00
0.00

8.11 (3.58)
6.42 (3.09)

0.97
0.93

6.73 (1.18)
4.95 (0.85)

 

9 Normal Ev(g = m111 , MR = M001 ,
MA = M011 ;x)

0.05
0.30
0.15

0.94
0.88

22.73 (7.12)
19.01 (6.02)

0.99
0.97

8.08 (1.36)
6.01 (0.99)

 

10 Weighted sum of
chi-square

Ev(g = m111 , MR = M110 ,
MA = M011 ;x)

0.05
0.30
0.05

0.99
0.98

15.1 (4.69)
11.75 (4.02)

0.97
0.93

10.92 (1.41)
7.84 (0.94)

11 Normal Ev(g = m111 , MR = M110 ,
MA = M011 ;x)

0.60
0.30
0.05

0.96
0.90

45.47 (6.09)
38.09 (5.12)

0.99
0.97

13.38 (1.42)
9.98 (1.01)

12 Normal Ev(g = m111 , MR = M110 ,
MA = M011 ;x)

0.05
0.30
0.15

0.99
0.96

18.98 (5.88)
15.14 (5.09)

0.98
0.94

11.08 (1.37)
8.01 (0.98)

13 Normal Ev(g = m111 , MR = M110 ,
MA = M001 ;x)

0.60
0.30
0.05

0.95
0.92

49.05 (5.9)
41.1 (4.97)

0.98
0.96

14.33 (1.44)
10.77 (1.01)

14 Normal Ev(g = m111 , MR = M110 ,
MA = M001 ;x)

0.05
0.05
0.15

0.95
0.88

22.55 (5.6)
18.18 (4.8)

0.97
0.94

12.93 (1.36)
9.56 (0.95)

In the g location figures the solid ellipse indicates the reference model space while dashed ellipse indicate the alternative model space. For the correctly specified
comparisons, cases 1–7, the star indicates the location of the generating process. For the misspecified comparisons, the arrow indicates the location of the projection
from the generating process to the model spaces. The asymptotic distribution refers to the unpenalized likelihood ratio statistic (often denoted G2); the penalty term for
converting G2 to an evidence function produces location-shifted versions of the asymptotic distributions (Dennis et al., 2019). The covariates are three N(0,1) random
vectors and are held constant over all simulations. For each line, the coefficients (β1, β2, β3)in the generating model of the three covariates (there are no interactions) are
given in the column g par. In all simulations the intercept is 2.0 and the error standard deviation is 1. The sample size for all simulations in this table is 100, a realistic size
for ecological studies, and one that meets most common rules of thumb for multiple regression. Coverage proportions were estimated using 1,000 trials for each case.
Coverage is reported for nominal 95 and 90% kde1d intervals. Mean interval length and its standard deviation is also reported.

model space. Table 3 describes coverage and interval length
for the global and local confidence intervals of the strength of
evidence for model comparisons in each of these topologies in
a simple multiple regression example (see the table legend for
simulation details).

A number of interesting patterns can be observed in
Table 3. In 12 of the 14 possible model space topologies,
the global intervals cover reasonably, with actual coverages
close to nominal coverages. Cases 1 and 8, however, have
no coverage! Case 1 is the topology of nested models with
the generating process in the reduced model. The asymptotic
distribution for this case is chi-square. Case 8 represents the

misspecified analog of Case 1, the approximating models are
nested with the generating process closest to the reduced
model. The asymptotic distribution for case 8 is a weighted
sum of chi-square. This is a very flexible distribution, and in
this case generates a distribution indistinguishable from a chi-
square distribution. Alarm at this complete lack of coverage
in these two cases is somewhat reduced by recognizing that
the target (1DPn(g,MR,MA,X)) is the boundary of these chi-
square distributions and hence impossible to capture with
finite sampling.

On the other hand, the local confidence intervals for evidence
behave well in all 14 possible model space topologies. In all cases
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FIGURE 6 | Box plots of the ratios of the local and global interval lengths as a
function sample size. Each box summarizes the results for 1,000 simulations.
In (A), all parameters (except for sample size) are set to those case 1 in
Table 3. In (B), all parameters (except for sample size) are set to those of case
4 in Table 3.

local interval coverage exceeds the nominal levels. Overcovering
is acceptable in approximate confidence intervals, particularly if
interval length is narrow. In all cases of Table 1, the average
lengths of the local intervals are less than that of global intervals.
This is not always the case. For very small sample size, the average
local interval length may exceed the average global interval length
(see Figure 6).

5.2. Sample Size and Interval Lengths
In the linear models example of Table 3, global and local
intervals respond quite differently to changes in sample size.
These differences are explored in Figures 6, 7. Figure 6A shows
box plots of the ratio of local interval length to global interval
length over a range of increasing sample size for the case of
case 1 from Table 1. The models compared are nested and
the generating process is in the reduced model. The asymptotic
distribution of evidence is chi-squared. At lower sample sizes the
local interval length generally exceeds the global length. At higher
sample sizes the local interval is generally shorter than the global
interval, with the ratio appearing to approach a limit of at about
0.6. Model topologies shown in case 1 and 8 of Table 3 behave
in this fashion.

Figure 6B represents case 4 from Table 1. The models
compared are overlapping with the generating process located in
the non-overlapping portion of the reference model. The interval
length behavior here is very different from that in panel A. Local
intervals exceed global intervals only at the smallest sample sizes.
Further, the local/global interval length ratio rapidly decreases
toward 0 (rate 1

/√
n). All model topologies except those of cases

1 and 8 behave in this fashion.
For both global and local evidence, the expectation grows

linearly with sample size. The standard deviation in global
evidence grows as the square root of sample size. On the other
hand, the standard deviation in local evidence approaches a
constant as sample size increases (Kitagawa and Konishi, 2010).
These differences have considerable impact on inference and
experimental design.

The ability of the global interval to distinguish the observed
evidence from 0 grows very slowly with sample size. On the other
hand, the local interval will be able to detect real difference from
0 or either of our two thresholds with relatively small sample
sizes. Nevertheless, in both global and local cases, the coefficient
of variation in evidence goes to 0 as sample size grows to infinity.

5.3. Model Set Misspecification and
Evidential Uncertainty
Here we demonstrate the effect of model set misspecification on
the uncertainty of evidence with simulations based on the Grace
and Keeley example. We look at four different conditions of
model set adequacy: (A) correctly specified comparison with very
strong evidence, (B) correctly specified comparison with strong
evidence, (C) a mildly misspecified model comparison, and (D) a
badly misspecified model comparison.

In case A), we compare the model that is the GKBM without
the weakest path (GKBM – R∼L) with a model that is the GKBM
without the second weakest path (GKBM – R∼C). The data in
these simulations are generated from the estimated (GKBM –
R∼L). The generating process is in the compared model set;
therefore, the comparison is correctly specified.

In case B) we estimate and compare the same models as in
case A. The generating model has same form as in case A (all
the same paths are present) but one of the coefficients (R∼P) has
been weakened from 0.299 to 0.205. The model set is still correctly
specified, but the penalize divergence differences (whether global
or local, see definitions 19 and 20) between the compared models
is less than in case A. Consequently, the distribution of realized
evidences (definitions 23 and 24) will be shifted to lower values.

Case C) compares the same models as in case A) {GKBM –
R∼L, GKBM – R∼C}. The data are generated by the GKBM.
Since the generating process (GKBM) is quite close to one of the
models in the model set (GKBM – R∼L), the comparison is only
mildly misspecified.

Finally, in case D) we compare a model that is the GKBM
without the second strongest path (GKBM – C∼ L) with a model
that is the GKBM without the strongest path (GKBM – F ∼ A).
As in case B), the data are generated by the GKBM. Since the
generating process (GKBM) is quite different from both of the
models in the model set, the comparison is badly misspecified.
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FIGURE 7 | Global (blue) and local (red) 90% confidence intervals for the 1,000 simulations for cases (A–D) Described in the text. In (A–D) simulations are ordered
by mean smoothed local evidence. Panel (E) presents the same data as (D) but ordered by the raw evidence. (A–C) Not shown reordered because with a Spearman
correlation of ≥0.997 between raw and mean smoothed evidence in these cases, there is no perceptible change in the figures.

Table 4 indicates that, at least in this example, under correct
model specification, a researcher is very unlikely to obtain secure
misleading evidence using either interval. On the other hand,
the researcher is more likely to correctly obtain strong and

secure evidence using the conditional interval than with the
unconditional interval. If the model set is misspecified, secure
misleading evidence becomes a possibility, and much more so
using the conditional interval than the unconditional interval.
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Interestingly, the average reliability (proportion of
the time correct model is identified) is always slightly
greater using the local evidence distribution rather
than when using the global evidence distribution.
This agrees with the previous results (Aitchison,
1975; Royall and Cumberland, 1985; Vidoni, 1995)
that indicate predictive accuracy is greater using
conditional inference.

The table gives the impression that there is little difference
between mildly and badly misspecified model sets regarding
evidence. But this is only because the choice of the mean
of the smoothed bootstrapped 1SIC as the measure of the
strength of evidence rather than the raw 1SIC has profound
impact. Figure 7 presents the same data used to calculate
Table 4 in another fashion. Here both the global and local
intervals are explicitly plotted for each 1000 trials in the
simulations of cases A, B, C, and D. The trials are sorted
along the x axis by the mean smoothed bootstrapped strength
of evidence. Panel E plots the same simulations and intervals
as panel D, however, in this case the trials are sorted by the
raw 1SIC—not by the mean smoothed bootstrapped 1SIC.
We do not show plots with similar reordering for panels A,
B, and C because in these cases the differences between the
raw 1SIC and the mean of the smoothed bootstrap are not
visually perceptible.

In cases A, B, and C the difference between raw 1SIC
and smoothed mean bootstrapped 1SIC are quite small
and the correlation of raw 1SIC and mean smoothed
bootstrapped 1SIC are greater than 0.99. Thus, there is
almost no impact of choice of evidence measure in these
cases with correct and mild misspecification. In the badly
misspecified case D, there is a large average difference
between raw 1SIC and the mean smoothed bootstrapped
1SIC and almost no correlation between them. Further,
when using the raw 1SIC, the location of the security
intervals becomes almost unrelated to the strength of evidence.
Consequently, the raw 1SIC has almost no ability to securely
identify the best model.

6. DISCUSSION

Historically, the appeal of classical Neyman-Pearson testing has
been the appearance of a strong control of error probabilities.
Dennis et al. (2019) show this apparent control to be an illusion
for the great majority of cases of interest in ecological science
where models are misspecified. Under model misspecification,
the realized error rate for a NP test can be less than or greater than
its nominal rate. In some realistic cases the probability of error in
a NP test can even increase with increasing sample size. Evidential
analysis is superior to NP testing in that the total error rate always
decreases with increasing sample size, both under correct model
specification and under model misspecification.

However, Dennis et al. (2019) further points out that
evidence is not entirely immune to problems due to model
misspecification. Under misspecification, the probability of
strong misleading evidence is not directly calculable because the
generating process is not one of the models compared and is
not even known. This current paper demonstrates that evidential
error rates can be estimated even under model misspecification
using non-parametric bootstrapping techniques (at least for
independent data). Our approach to the bootstrapping of
evidence differs from that used in the EIC (Konishi and
Kitagawa, 1996; Ishiguro et al., 1997) in that we bootstrap the
evidential comparison as a unit (see definitions 23 and 24 Box
4) whereas the EIC compares bootstrapped components. The
joint bootstrapping allows us to estimate the impact of model
set misspecification on evidential uncertainty more effectively.
In this paper, we have only addressed the case of independently
distributed data. We expect, however, that this approach can
be extended to other data structures with the use of subtler
bootstrapping methods (Lele, 1991, 2003; Lahiri, 2003).

It is important for scientists seeking to use and interpret these
measures of uncertainty to understand the two intervals, global
and local, are quantifying two different kinds of uncertainty.
Statistical evidence is an estimate of the relationship between two
models and the generating process. It is a penalized sample size
scaled estimate of the difference of the divergences of two models

TABLE 4 | Models compared and generating process for each model set are described in the text.

Case Model set adequacy Interval type Evidential security categories Average reliability

MS CS MI CI W PI SI PS SS

A Correctly specified Global 0 0 0.001 0 0.069 0.108 0.447 0 0.375 0.944

Local 0 0 0 0.001 0.069 0.105 0.101 0 0.724 0.975

B Correctly specified Global 0 0 0.001 0.003 0.345 0.195 0.371 0 0.085 0.834

Local 0.001 0 0 0.003 0.336 0.202 0.152 0 0.306 0.877

C Mildly mis-specified Global 0.003 0 0.042 0.066 0.260 0.140 0.390 0 0.099 0.720

Local 0.034 0 0.012 0.063 0.256 0.148 0.126 0 0.361 0.775

D Badly mis-specified Global 0.003 0 0.068 0.050 0.261 0.114 0.400 0 0.104 0.711

Local 0.046 0 0.025 0.050 0.260 0.115 0.137 0 0.367 0.761

The bootstrap mean evidence is used as the strength of evidence. Each row lists the proportions each security category occurs in 1,000 simulations and the overall
reliability. Security in each row is determined either by the unconditional evidential confidence intervals or the conditional evidential confidence intervals. The categories
of security are: MS, misleading and secure; CS, confusing and secure; MI, misleading and insecure; W, weak; PI, prognostic and insecure); SI, strong and insecure; PS,
prognostic and secure; SS, strong and secure. Reliability is the proportion of times the best model is correctly identified—by any strength of evidence—averaged over all
trials.
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from the generating process (truth). Valid confidence intervals
of an estimate tell us how confident we are that the estimation
target lies within the interval. In the global case, our estimate
of evidence is the mean of the global bootstrap distribution of
evidence, but the estimation target is the true penalized scaled
divergence difference (Box 4, definition 19). In the local case
our estimate of evidence is the mean of the local bootstrap
distribution of evidence, but the target is the true evidence in the
data without model estimation error (Box 4, definition 20).

For badly misspecified model comparisons local inference
has strong and secure but misleading evidence more often than
global inference. Nevertheless, we are in a position to make
scientific inferences about the true relationships of our compared
models to the generating process, backed by an uncertainty
measure warrant.

Both the global and local evidence confidence intervals are
important to science because they answer different questions.
The global interval is a confidence interval on the true penalized
scaled divergence difference. This speaks directly to the relative
ability of our models to represent nature. The resampling
is non-parametric to accommodate model misspecification.
Further, the intervals incorporate both sample and model
estimation uncertainty.

The global uncertainty we offer answers the question of how
dissimilar to the current evidence we would expect new evidence
to be if our experiment were to be repeated. This is the interval
that other researchers should consider when trying to decide if
their new results call the current results into question.

On the other hand, the local uncertainty tells you how
confident you are in your evidence given the data you have
collected. This might be the interval to use if you intend to take
an action based on the results.

Replication is often seen as a pillar of science as a social activity
(e.g., Johnson, 2002). But, what to replicate and how to measure is
not always clearly understood. Which interval should a scientist
use? Unfortunately, a univocal recommendation is not possible.
The local interval is tremendously appealing because it is so
short and because its overall reliability is greater (see Table 4).
However, to justify inference based on it alone, the scientist
needs to be able to defend the assumption of approximately
correct model set specification. In the rough and tumble world of
ecology this will rarely be possible, except for tightly controlled
experiments with well understood error structures. The global
interval presents an appraisal of the replicability of the scientist’s
results. If the global interval has been presented, the local interval
can be a useful indication of how good the results could possibly
be. For the accumulation of understanding through science, the
global interval may be preferable. This preference is grounded in
our opening quote from Plato. Using the global interval, you will
accept wrong statements less frequently than when using the local
interval. However, in a decision context, where costs and benefits
are explicit, the local inference’s property of making correct
predictions more often than global inference might be important.

Hopefully, our recommendation to focus on the global
interval will be only temporary. We expect that often model sets
could be misspecified, but close enough to correctly specified
that the local interval would be a justifiable improvement

over the global interval. Research into diagnostics to identify
these cases is called for (Cook and Weisberg, 1982). Useful
diagnostics will involve more than measures of the adequacy
of single models (e.g., Markatou and Sofikitou, 2019) they
must somehow include measures of the geometry of the
generating process and the competing models (Dennis et al.,
2019; Ponciano and Taper, 2019).

In the meantime, little is practically lost. We agree with
Goutis and Casella (1995) that “In any experiment both pre-
data inferences and post-data inferences are important.” Our
inferential strategy is a hybrid of local and global (conditional
and unconditional). Our primary tool is the strength of evidence,
which is local (i.e., conditional). The evidence expresses clearly
what the data we have says about the relationships among
nature and our models. Our secondary tools are our pair
of measures of the security of the evidence. If we choose a
global (that is unconditional measure) we gain an honest, if
perhaps overly conservative, insight into the degree that chance,
experimental/sample design, and model misspecification may
have influenced our evidence. If we choose a local (that is a
conditional measure) we gain a more precise understanding
of the information in the data, at the risk of overconfidence
due to model misspecification. Much of statistics both classical
and Bayesian relies on conditional inference and thus might be
over-confident in its conclusions in the face of potential model
misspecification (see also Yang and Zhu, 2018).

While the global uncertainty, either calculated from
asymptotic theory or from the non-parametric bootstrap is
a useful statistic, it should not be interpreted too literally. As
Fisher (1945a,b, 1955, 1956, 1960) long argued (see Rubin,
2020; Devezer et al., 2021 for detailed discussions) an exact
repetition of an experiment is not possible in many branches
of science. Certainly, this is true in ecology and environmental
science, where heterogeneity and temporal data abound. To
paraphrase Heraclitus, you can’t electrofish the same river twice.
A more realistic understanding of global uncertainty would come
from a metanalysis of the actual repetition of modestly sized
experiments distributed in space and time than from a single
large experiment. As an example, Jerde et al. (2019) conducts an
evidential comparison of models for the intra-specific allometry
of metabolic rate in fish using a database of 25 high quality
studies, with 55 independent trials, across 16 fish species.

Jerde et al. (2019) use evidential support intervals in their
analysis of the allometry of metabolic rate in fish. These intervals
are post-data/conditional/local intervals. We wish to point out
that, while both are useful, evidential support intervals and
confidence intervals for evidence are different. Evidential support
intervals indicate the range of parameter values in a model space
that are not differentiated from the best estimate at a specified
strength of evidence. Confidence intervals make a statement
that at the specified probability a random interval, whose
randomness stems from sample space probabilities, contains
the true parameter value (Dennis, 2004). Under correct model
specification, the support interval indicates over what range of
parameter values the relative plausibility of the best estimate
relative to the parameter value is less than the designated
strength of evidence.
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Under a correct model assumption, a1AIC interval is directly
transformable into a confidence interval on the strength of
evidence using Wilks-Wald hypothesis test inversion (see Dennis
et al., 2019). The confidence level of this transformed interval
will depend only on the chosen strong evidence threshold,
kR. On the other hand, the level of an evidence confidence
interval corresponding to a 1SIC interval will be a function
of both kR and log(n). As n increases the confidence level will
increase. This parametric confidence interval is preferred if a true
model assumption is justified. Using a nonparametric confidence
interval rather than a evidence interval acknowledges that your
model set may be misspecified.

Global and local confidence intervals for the strength of
evidence, at least as we have developed them in this paper, are
used in the comparisons of model spaces. The intervals discussed
are on the space of strength of evidence values; they are not
on the space of parameter values nor are they on the space
of predictions. We have seen that the interpretation of local
and global intervals on evidence requires deep consideration of
the scientific questions being asked. Complexities also arise for
conditional and unconditional intervals for parameters and for
predictions. We defer to another paper a unified discussion of the
effects of post-data and pre-data intervals on science.

As laid out in Royall (1997) and Dennis et al. (2019), one of
the great strengths of the evidential approach relative to NPHT,
is that M, the probability of misleading evidence goes to 0 as
sample size increases whereas α, the corresponding uncertainty
measure in NPHT, remains constant. It is a commonplace
in introductory mathematical statistics courses that hypothesis
tests and confidence intervals are inter-convertible. Given this,
a reasonable question to ask is: By incorporating confidence
intervals have we somehow given up the superior error structure
of evidence? The answer to this question is no. The NPHT
freights both its measure of the strength of evidence and its
measure of uncertainty onto α. We use 2 measures; the primary is
evidence and as sample size increases this will go to either+∞ or
−∞. Our second measure is the standard deviation of evidence
and, as discussed in Section 5.2, this does not grow as rapidly as
the evidence itself. As a consequence, the probability of making
an error of assignment—at any specified level of confidence—also
goes to 0 as sample size increases.

A literature has developed that constructs confidence sets
(i.e., confidence intervals on discrete parameters) in model
identification (Hansen et al., 2011; Ferrari and Yang, 2015;
Sayyareh, 2017; Li et al., 2019; Zheng et al., 2019; Liu et al., 2021).
These papers differ from the current work in several important
fashions. First, the confidence intervals being considered are
not even related. Our work constructs a confidence interval
on a continuous parameter, the strength of evidence between
models. The parameter in the model confidence sets literature
is a discrete parameter of model inclusion. Second, one feature
of the confidence set approach is that specification of the
entire model set is essential to interpretation of a confidence
set. This is a drawback that is shared by Bayesian model
selection and model averaging. Our worked example in Section
3 makes 14 evidential comparisons. Should some sort of
adjustment be made? If the analyst is willing to specify the

model set, multiple comparison adjustments are appropriate
in evidential comparisons, particularly when massive numbers
of comparisons or badly misspecified model sets are involved.
Fortunately, there are several features of the evidential paradigm
that allow it to respond to multiple comparisons with more
grace and less cost than classical hypothesis testing approaches.
Evidential multiple comparisons have been extensively discussed
in Strug and Hodge (2006a,b) and Taper and Lele (2011).
These reviews were written from the standpoint of correctly
specified model sets with the probability of misleading evidence
being estimated by Royall’s universal bound (Royall, 1997).
We hope to soon write a paper on evidential multiple
comparisons that utilizes the ability of our non-parametric
bootstrap to estimate the probability of misleading evidence
in the face of model misspecification (Taper et al., 2019;
Liu et al., 2021).

Another attribute of the model confidence set papers is that
they all make their selections based on some form of NPHT.
We suspect that these confidence sets inherit the stringent
properties of multiple comparisons in NPHTs rather than the
more permissive properties of evidential multiple comparison.
We look forward to investigating this in more detail in the future.

Due to limitations of space, the topic of this paper is
treated strictly as a development of evidentialist statistics
using a frequentist notion of probability. When epistemic
comparisons are made, they are to NPHT. Readers interested
in better understanding the relative epistemic character
of evidential statistics, error statistics (classical hypothesis
testing), and Bayesian statistics might explore some of
Dennis (2004), Lele (2004a,b, 2010, 2020a), Taper and Lele
(2004), Efron (2005), Lele and Allen (2006), Lele et al. (2007,
2010), Lele and Dennis (2009), Ponciano et al. (2009, 2012),
Bandyopadhyay and Forster (2011), Bandyopadhyay et al.
(2016), Taper and Ponciano (2016), Mayo (2018), and Brittan
and Bandyopadhyay (2019) as examples of a vast battleground of
literature on the topic.

7. CONCLUSION

Neither the Bayesian nor classical frequentist statistical toolkits
appear adequate for the increasingly complex challenges of
the future. In the long run, neither our models nor our
data, nor our conclusions are static. We need to look at
multiple models realizing that we do not know truth and
evolve these models toward better approximations of truth
with the accumulation of data and use of evidence as a
selection function.

We have produced both global and local uncertainty
measures that are easily calculated for many analyses
using the R-code that we supply in Supplementary
Material. Further, by creating three categories for the
strength of evidence coupled with three categories for the
security of evidence we have constructed a conceptual
language that allows scientists a statistically valid way
to talk, and publish, about interesting results that are
not yet conclusive.
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