A16

Extra credit module 16

Joint Distributions

Stat 251

Instructions:

Only upload in BbLearn. Follow directions on Assignments link on class website for BbLearn submissions.

This assignment is worth up to 3.5 points if and only if you complete ALL problems

- (1) A certain market has both an express checkout line and a superexpress checkout line. Let X denote the number of customers in line at the express checkout at a particular time and let Y denote the number of customers in the line at the superexpress checkout the same time. Suppose the joint pmf of X and Y are found in the accompanying table.
 - (a) What is the probability that there is exactly one customer in each line?
 - (b) What is the probability that the numbers of customers in the two lines are identical?
 - (c) Find $p_X(x)$ and $p_Y(y)$ (marginal distributions of X and Y)
 - (d) calculate:
 - (i) E(X), E(Y)
 - (ii) $E(X^2), E(Y^2)$
 - (iii) V(X), V(Y)
 - (iv) SD(X), SD(Y)
 - (v) E(XY)
 - (vi) Cov(X,Y)
 - (vii) Corr(X, Y)
 - (viii) E(X+Y), E(X-Y)
 - (ix) V(X+Y), V(X-Y)
 - (e) Are X and Y independent? Show work

	y	0	1	2	3
	0	0.08	0.07	0.04	0.00
	1	0.06	0.15	0.05	0.04
x	2	0.05	0.04	0.10	0.06
	3	0.00	0.03	0.04	0.07
	4	0.00	0.01	0.05	0.06

- (2) A service station had both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, let Y denote the number of hoses on the full-service island in use at that time. The joint pmf of X and Y are in the accompanying table.
 - (a) Calculate the Marginal distributions of X and Y
 - (b) Calculate EX, EY, E(XY), VX, VY, SDX, SDY, Cov(X, Y), Corr(X, Y). Once Corr(X, Y) is calculated, interpret.
 - (c) Calculate the probability there is exactly one hose in use at each station

- (d) Calculate the probability there is at most one hose in use at each station
- (e) Given that two hoses are in use at the self-service island, what is the probability there is at most one hose in use on the full-service island?
- (f) Given that two hoses are in use at the full-service island, what is the probability there is at most one hose in use on the self-service island?

			Y	
	p(x, y)	0	1	2
	0	0.15	0.02	0.01
X	1	0.06	0.18	0.07
	2	0.03	0.18	0.30