Final formula sheet

Stat 251 F19

General form of CI

$$
\text { statistic } \pm \text { bound }
$$

bound $=($ critical value $)($ se $)$ and critical value $=z^{\star}$ or t^{\star}
For se formulas, see table below
χ^{2} (Chi-square)

$$
\chi_{c a l c}^{2}=\sum \frac{(O-E)^{2}}{E}
$$

GoF: $E=n p_{i}, d f=k-1$ where k is the number of categories
Independence: $E=\frac{\left(\text { row }_{i} \text { total }\right)\left(\text { column } n_{j} \text { total }\right)}{\text { grand total }}=\frac{\left(n_{i}\right)\left(n_{j}\right)}{n}, d f=(r-1)(c-1)$ where r is the number of rows and c is the number of columns.

Simple Linear Regression

Population model: $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$
Sample model: $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x$ or $\hat{y}=a+b x$
Residual: $e_{i}=y_{i}-\hat{y}_{i}$

1 and 2 sample formulas
Table 1: 1- and 2-sample

	Parameter	Statistic	se	z vs. t	test statistic	$d f$
1 Mean σ known	μ	\bar{X}	$\frac{\sigma}{\sqrt{n}}$	z	$\frac{\bar{X}-\mu_{0}}{s e}$	N/A
1 Mean σ unknown	μ	\bar{X}	$\frac{s}{\sqrt{n}}$	t	$\frac{\bar{X}-\mu_{0}}{s e}$	$n-1$
1 proportion (\%)	p	\hat{p}	$\sqrt{\frac{p q}{n}}$	z	$\frac{\hat{p}-p_{0}}{s e}$	N/A
2 proportions CI	$p_{1}-p_{2}$	$\hat{p}_{1}-\hat{p}_{2}$	$\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}$	z	N/A (see below)	N/A
2 proportions test	$p_{1}-p_{2}$	$\hat{p}_{1}-\hat{p}_{2}$	$\begin{aligned} & \sqrt{\hat{p} \hat{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\ & \text { where } \hat{p}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}} \end{aligned}$	z	$\frac{\hat{p}_{1}-\hat{p}_{2}}{s e_{\text {test }}}$	N/A
2 means independent	$\mu_{1}-\mu_{2}$	$\bar{X}_{1}-\bar{X}_{2}$	$\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$	t	$\frac{\bar{X}_{1}-\bar{X}_{2}}{s e}$	$\min \left(n_{1}-1, n_{2}-1\right)$
2 means dependent	μ_{D}	\bar{X}_{D}	$\frac{s_{D}}{\sqrt{n}}$	t	$\frac{\bar{X}_{D}}{s e}$	$n-1$

