Real estate ads suggest that 64\% of homes for sale have garages, 21% have swimming pools, and 17% have both. Find the following probabilities:

$$
P(\text { garage })=0.64, P(\text { pool })=0.21, P(\text { garage and pool })=0.17
$$

This is the perfect setup for the confusion matrix

	P (pool)	P (pool')	total
P (garage)	0.17	0.47	0.64
P (garage')	0.04	0.32	0.36
total	0.21	0.79	1

Pool or a garage: $P($ pool or garage $)=P($ garage or pool $)$

$$
=P(\text { garage })+P(\text { pool })-P(\text { garage and pool })=0.64+0.21-0.17=0.68
$$

Pool but no garage: $P($ pool $)-P($ garage and pool $)=0.21-0.17=0.04$
Neither a pool nor a garage: neither=intersection

$$
P\left(\text { pool' }^{\prime} \text { and garage' }\right)=0.32
$$

Are having a pool and a garage independent?

$$
\begin{gathered}
P(\text { pool and garage }) ?=? P(\text { garage }) P(\text { pool })==> \\
0.17 ?=?(0.64)(0.21)
\end{gathered}
$$

$0.17 \neq 0.1344 \therefore$ (therefore) having a garage or a pool is not independent
Are the events mutually exclusive/disjoint? The intersection between having a garage and pool exists, therefore they cannot be disjoint

Dr. Peter Venkman wanted to do a test on ESP. He randomly selected his volunteers and they were shown one card of 4 different ones, one card at a time (blank side facing the subject) and were told to guess what shape they thought was on the back side of the card. The test was done for a total of 10 cards per subject.

We have a sample size (10 trials per subject), probability of success is 25% (1 in 4 chance of guessing correctly), trials are independent (outcome of any one card has no impact on outcome of others) Binomial distribution

$$
X \sim \operatorname{bin}(n, p)==>X \sim \operatorname{bin}(10,0.25)
$$

$P(X=x)=\binom{n}{x} p^{x} q^{n-x}$ with $q=1-p$
Probability of exactly one correct guess
$P(X=1)=\binom{10}{1}(0.25)^{1}(0.75)^{10-1}=0.1877=18.77 \%$ chance of guessing exactly one
At least 8 correct guesses

$$
\begin{gathered}
P(X \geq 8)=P(8)+P(9)+P(10) \\
P(8)=\binom{10}{8}(0.25)^{8}(0.75)^{10-8}=0.00039 \\
P(9)=\binom{10}{9}(0.25)^{9}(0.75)^{10-9}=0.000029 \\
P(10)=\binom{10}{10}(0.25)^{10}(0.75)^{10-10}=0.00000095 \\
P(X \geq 8)=0.00039+0.000029+0.00000095=0.0004 \\
E X=n p=10(0.25)=2.5 \\
V X=n p q=10(0.25)(0.75)=1.875 \\
S D X=\sqrt{V X}=\sqrt{1.875}=1.369
\end{gathered}
$$

