Find z for the top 1\%: p-value=.01, RT = 2.327
http://www.statdistributions.com/normal?p=0.01\&tail=2
Fina z for $\mathrm{Q} 1\left(\mathrm{Q} 1=25^{\text {th }}\right.$ percentile; 25% of observations are less than Q 1 , and 75% are greater than Q 1$)$: p-value $=.25, \mathrm{LT}=-0.675$
http://www.statdistributions.com/normal?p=0.25\&tail=3
Find z for Q3 (75 ${ }^{\text {th }}$ percentile): p -value $=.75, \mathrm{LT}=0.675$
http://www.statdistributions.com/normal?p=0.75\&tail=3

A specialty food company sells gourmet hams by mail order. The hams vary in size from 4.15 to 7.45 pounds, with a mean weight of 6 lbs . and standard deviation of 0.65 lbs . The weights of hams are approximately normal.

$$
\begin{aligned}
X \sim N(\mu, \sigma) & ==>X \sim N(6,0.65) \\
z & =\frac{X-\mu}{\sigma}
\end{aligned}
$$

Where X is observation of interest, μ is mean of the distribution, and σ is the standard deviation of the distribution

Find the following:

1. Weight of a ham is more than 6 lbs. $P(X>6)=P\left(Z>\frac{6-6}{0.65}\right)=P(Z>0)=0.5=50 \%$ http://www.statdistributions.com/normal?z=0\&tail=2
2. Weight of a ham is less than $5 \mathrm{lbs} P(X<5)=P\left(Z<\frac{5-6}{0.65}\right)=-1.54$: z=-1.54,LT $=0.062=6.2 \%$ http://www.statdistributions.com/normal?z=-1.54\&tail=3
3. Weight of a ham more than $7.45 \mathrm{lbs} P(X>7.45)=P\left(Z>\frac{7.45-6}{0.65}\right)=P(Z>2.23)=$ $0.013=1.3 \% z=2.23, R T$ http://www.statdistributions.com/normal?z=2.23\&tail=2
4. Weight between 4.15 and $6 \mathrm{lbs} . P(4.15<X<6)=P\left(\frac{4.15-6}{0.65}<Z<\frac{6-6}{0.65}\right)=$ $P(Z<0)-P(Z<-2.85)=\mathrm{z}=0, \mathrm{LT}$ and $\mathrm{z}=-2.85 \mathrm{LT}=0.5-0.002=0.498=49.8 \%$ http://www.statdistributions.com/normal?z=0\&tail=3 http://www.statdistributions.com/normal?z=-2.85\&tail=3
5. Heaviest 8% of hams (find the z score, solve for X in $z=\frac{X-\mu}{\sigma} \Rightarrow X=z \sigma+\mu \mathrm{p}$-value=.08, RT http://www.statdistributions.com/normal?p=0.08\&tail=2
$z=1.405 \rightarrow X=1.405(0.65)+6=6.91 \mathrm{lbs}$

OR: p-value=.08, mean=6, stdev=.65, RT = 6.91 lbs
http://www.statdistributions.com/normal?p=0.08\&mean=6\&sd=0.65\&tail=2

