Rainfall in Ithaca, NY: follows a normal distribution with a yearly average of $35^{\prime \prime}$ with a standard deviation of $1 . .25$ " . Find the following probabilities and other such questions:

$$
\begin{gathered}
X \sim N(\mu, \sigma)==>X \sim N(35,1.25) \\
z=\frac{X-\mu}{\sigma}
\end{gathered}
$$

1. Probability that rain is less than 34 ": $P(X<34)=P\left(Z<\frac{34-35}{1.25}\right)=P(Z<-0.8)=0.212=$ $21.2 \% \mathrm{z}=-.8$, LT
http://www.statdistributions.com/normal?z=-0.8\&tail=3
OR
z-score: 34 (is argument), mean=35, stddev=1.25, LT
http://www.statdistributions.com/normal?z=34\&mean=35\&sd=1.25\&tail=3
2. Probability than there is more than $36^{\prime \prime}$ rain
$P(X>36)=P\left(Z>\frac{36-35}{1.25}\right)=P(Z>0.8)=0.212=21.2 \%$
$\mathrm{z}=.8$, RT http://www.statdistributions.com/normal?z=0.8\&tail=2
3. Probability that there is less than 20 " of rain: $P(X<20) \approx 0(=0)$
z=20, mean=35, stddev=1.25, LT
http://www.statdistributions.com/normal?z=20\&mean=35\&sd=1.25\&tail=3
$z=\frac{20-35}{1.25}=-12$ Occasionally you will get an extreme value (z-score); check your math and if you are still getting the same answer, then it is correct. Extremes can happen
4. What is the amount of rain for the 10% of smallest rainfall amount. Since the area (percent) we want is the smallest 10% (bottom 10%). This is area to the left. Find the zscore that goes with the bottom 10%, then solve for X.
To get z : p -value: .1, $\mathrm{LT}: z=-1.282$ Plug into $z=\frac{X-\mu}{\sigma}$ and solve for $\mathrm{X}(X=z \sigma+\mu)$
http://www.statdistributions.com/normal?p=0.1\&tail=3

$$
X=-1.282(1.25)+35=33.3975 \approx 33.4 "
$$

- To use the above analyses, the distribution MUST be normal
- No sample size required for this
- Mean (μ) and standard deviation (σ) MUST be given
- If you have no idea if the distribution is normal, you cannot use this procedure
- The use of this procedure is for single observation

