315325158352 257: chick weights (in grams)
Calculate the mean, variance, standard deviation of the sample of chick weights
$\bar{X}=\frac{\sum x_{i}}{n}=\frac{315+325+158+352+257}{5}=281.4 \mathrm{~g}$
$s^{2}=\frac{\sum\left(x_{i}-\bar{X}\right)^{2}}{n-1}$
$=\frac{(315-281.4)^{2}+(325-281.4)^{2}+(158-281.4)^{2}+(352-281.4)^{2}+(257-281.4)^{2}}{4}$
$=\frac{23837.2}{4}=5959.3 g^{2}$
$s=+\sqrt{s^{2}}=+\sqrt{5959.3}=77.1965 \approx 77.2 \mathrm{~g}$

Empirical Rule

68% of chick weights are within: $\bar{X} \pm 1 s=281.4 \pm 77.2=204.2,358.6 \mathrm{~g}$
95% observations are within: $\bar{X} \pm 2 s=281.4 \pm 2(77.2)=127,435.8 \mathrm{~g}$
99.7% observations are within: $\bar{X} \pm 3 s=281.4 \pm 3(77.2)=49.8,513 g$
Graphs:
Symmetric/skewed
Modality

Approximately symmetric and unimodal (could technically say bimodal)

Right skewed, unimodal

Left skewed, unimodal

