Rules:

- 1. $0 \le P(x_i) \le 1$
- 2. $\sum P(x_i) = 1$
- 3. Complement: P(A') = 1 P(A)
- 4. Addition: P(A or B) = P(A) + P(B) P(A and B)
- 5. Multiplication (independent only): P(A and B) = P(A)P(B)

Confusion matrix

d = P(A and B), e = P(A and B'), f = P(A), g = P(A' and B), h = P(A' and B'), i = P(A'), j = P(B), k = P(B')

	<i>P</i> (<i>B</i>)	P(B')	
<i>P(A)</i>	d	е	f
P(A')	g	h	i
	j	k	1

EXAMPLE1: How accurate are the weather predictions? Look at weather predictions and actual weather for one calendar year (365 days).

Data is a mix of a contingency table with probability example

	A rain	A no rain	
F Rain	27	63	90
F no rain	7	268	275
	34	331	365

 $P(Forecasted \ rain) = \frac{90}{365} = 0.2466$

 $P(Forecasted no rain) = \frac{275}{365} = 0.7534$

 $P(forecast rain and no actual rain) = \frac{63}{365} = 0.1726$

56% of American workers have a retirement plan, 68% have health insurance, and 49% have both.

P(RP) = 0.56, P(HI) = 0.68, P(RP and HI) = 0.49

	P(HI)	P(HI')	
P(RP)	0.49	0.07	0.56
P(RP')	0.19	0.25	0.44
	0.68	0.32	1

P(RP' and HI') = 0.25

P(RP' or HI') = P(RP') + P(HI') - P(RP' and HI') = 0.44 + 0.32 - 0.25 = 0.51

Are RP and HI mutually exclusive? NO because the intersection between RP and HI exists (they can happen at the same time)

Are RP and HI independent? P(RP and HI)? =? $P(RP)P(HI) \Rightarrow 0.49$? =? $(0.56)(0.68) \Rightarrow 0.49 \neq 0.3808 \therefore$ RP and HI are not independent (they are dependent)