Rules:

1. $0 \leq P\left(x_{i}\right) \leq 1$
2. $\sum P\left(x_{i}\right)=1$
3. Complement: $P\left(A^{\prime}\right)=1-P(A)$
4. Addition: $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
5. Multiplication (independent only): $P(A$ and $B)=P(A) P(B)$

Confusion matrix

$d=P(A$ and $B), e=P\left(A\right.$ and $\left.B^{\prime}\right), f=P(A), g=P\left(A^{\prime}\right.$ and $\left.B\right), h=P\left(A^{\prime}\right.$ and $\left.B^{\prime}\right), i=P\left(A^{\prime}\right)$, $j=P(B), k=P\left(B^{\prime}\right)$

	$P(B)$	$P\left(B^{\prime}\right)$	
$P(A)$	d	e	f
$P\left(A^{\prime}\right)$	g	h	i
	j	k	1

EXAMPLE1: How accurate are the weather predictions? Look at weather predictions and actual weather for one calendar year (365 days).

Data is a mix of a contingency table with probability example

	A rain	A no rain	
F Rain	27	63	90
F no rain	7	268	275
	34	331	365

$P($ Forecasted rain $)=\frac{90}{365}=0.2466$
$P($ Forecasted no rain $)=\frac{275}{365}=0.7534$
$P($ forecast rain and no actual rain $)=\frac{63}{365}=0.1726$
56% of American workers have a retirement plan, 68% have health insurance, and 49% have both.
$P(R P)=0.56, P(H I)=0.68, P(R P$ and $H I)=0.49$

	$P(H I)$	$P\left(H I^{\prime}\right)$	
$P(R P)$	0.49	0.07	0.56
$P\left(R P^{\prime}\right)$	0.19	0.25	0.44
	0.68	0.32	1

$P\left(R P^{\prime}\right.$ and $\left.H I^{\prime}\right)=0.25$
$P\left(R P^{\prime}\right.$ or $\left.H I^{\prime}\right)=P\left(R P^{\prime}\right)+P\left(H I^{\prime}\right)-P\left(R P^{\prime}\right.$ and $\left.H I^{\prime}\right)=0.44+0.32-0.25=0.51$
Are RP and HI mutually exclusive? NO because the intersection between RP and HI exists (they can happen at the same time)

Are RP and HI independent? $P(R P$ and $H I) ?=? P(R P) P(H I) \Rightarrow 0.49 ?=?(0.56)(0.68) \Rightarrow$ $0.49 \neq 0.3808 \therefore \mathrm{RP}$ and HI are not independent (they are dependent)

