Z-scores represent how many standard deviations from the mean the X-value is.

On my computer's music library, suppose all of the songs have a mean duration of 242.4 seconds with a standard deviation of 114.51 seconds, and is approximately normal.
$z=\frac{X-\mu}{\sigma}$

- What is the distribution and parameter(s)?
$Y \sim N(\mu, \sigma) \Rightarrow Y \sim N(242.4,114.51)$
- The song Hollow Skies (from Final Fantasy VII Remake), by Nobuo Uematsu, is 175 seconds long. Calculate the z-score, and compare with next one
$P(Y<175)=P\left(Z<\frac{175-242.4}{114.51}\right)=P(Z<-0.589)=0.278$
statdistributions.com: $z=-0.589$, mean $=0$, stddev $=1$, LT
http://www.statdistributions.com/normal?z=-0.589\&tail=3
- The song One-Winged Angel - Rebirth (from Final Fantasy VII Remake), by Nobuo Uematsu, is 619 seconds long. Calculate the z-score. What percentiles are each of the songs?
$P(Y<619)=P\left(Z<\frac{619-242.4}{114.51}\right)=P(Z<3.289)=0.999$
statdistributions.com: $z=3.289$, mean $=0$, stddev $=1$, LT
http://www.statdistributions.com/normal?z=3.289\&tail=3
Comparison: Hollow Skies is less than one standard deviation below the mean. One-Winged Angel-Rebirth is over 3 standard deviations above the mean.

A company makes new batteries targeted at owners of MP3s. One claims that its mean battery life is 11 hours with a standard deviation of 1.5 hours. Battery life follows a normal distribution.

- What is the distribution and parameter(s)?

$$
X \sim N(\mu, \sigma) \Rightarrow X \sim N(11,1.5)
$$

- What is the probability that the batteries last for an 8 -hour day at the beach? (find the probability that the batteries last at most 8 hours, or up to 8 hours)
$P(X<8)=P\left(Z<\frac{8-11}{1.5}\right)=0.023$
statdistributions.com: $z=8$, mean=11, stddev=1.5, LT
http://www.statdistributions.com/normal?z=8\&mean=11\&sd=1.5\&tail=3
- What are the shortest 5% of battery lifespans? 8.532 hours statdistributions.com: p-value $=0.05$, mean=11, stddev=1.5, LT http://www.statdistributions.com/normal?p=0.05\&mean=11\&sd=1.5\&tail=3

