Train cars of the Crandic Railway company carry 30 standard sized containers. The average container weighs 380 pounds with standard deviation of 50 pounds.

- Calculate the mean and standard deviation of the sampling distribution of the sample mean of the 30 containers. Describe the distribution

$$
\begin{aligned}
& \bar{X} \sim N(\mu, s e) \text { with } s e=\frac{\sigma}{\sqrt{n}}=\frac{50}{\sqrt{30}}=9.13 \\
& \bar{X} \sim N(380,9.13)
\end{aligned}
$$

- Calculate the probability that the average weight of the 30 containers is less than 350 pounds $P(\bar{X}<350)=0.001$
statdistributions.com: $z=350$, mean=380, stddev=9.13, LT
http://www.statdistributions.com/normal?z=350\&mean=380\&sd=9.13\&tail=3
Steve, the train engineer, becomes upset if a train car weighs more than 12000 pounds. There are 30 containers per train car.
- Calculate the mean and standard deviation of the sampling distribution of the sample total (total weight of the train car). Describe the distribution
$\hat{\tau} \sim N(\tau, s e)$ with $\tau=n \mu=30(380)=11400$
$s e=\sqrt{n}(\sigma)=\sqrt{30}(50)=50 \sqrt{30}=273.86$
$\hat{\tau} \sim N(11400,273.86)$
- Calculate the probability that the total weight of the train car is more than Steve's breaking point
$P(\hat{\tau}>12000)=0.014$
statdistributions.com: $z=12000$, mean=11400, stddev=273.86, RT
http://www.statdistributions.com/normal?z=12000\&mean=11400\&sd=273.9\&tail=2

Suppose that it is known that 45% of people favor Brand X (it will put a smile on your face!). A random sample of 500 people was taken.

- Calculate the mean and standard deviation of the sampling distribution of the sample proportion. Describe the distribution
$\hat{\pi} \sim N(\pi, s e)$ with $s e=\sqrt{\frac{\pi(1-\pi)}{n}}=\sqrt{\frac{(0.45)(1-0.45)}{500}}=0.0222$
$\hat{\pi} \sim N(0.45,0.0222)$
- Calculate the probability that at least 50% of people favor Brand X
$P(\hat{\pi}>0.5)=0.012$
statdistributions.com: $\mathrm{z}=0.5$, mean $=0.45$, stddev $=0.0222$, RT
http://www.statdistributions.com/normal?z=0.5\&mean=0.45\&sd=0.022\&tail=2

