Categorical data analyses

Module 11 review

Statistics 251: Statistical Methods

Checklist

(1) State hypotheses, check assumptions if requested
(2) State χ^{2} test statistic, $d f$, and pvalue from output
(3) State test results
(4) Make conclusion in context from results
(5) State possible error that could have been made and discuss it within the context

CHOCOLATE!

M\&M's, made by Mars Inc., says that their population of colors of their milk chocolate M\&M candies are as follows, along with a random sample of a bag of 106 candies. Is there sufficient evidence the bag of candies has the same distribution of colors as stated by Mars?

Color	Red	Yellow	Blue	Green	Orange	Brown
Population \%	20%	20%	10%	10%	10%	30%
Sample count	23	29	14	8	12	20

```
M.M
    colors observed mars
1 Red 23 0.2
2 Yellow 29 0.2
3 Blue 14 0.1
4 Green 8 0.1
5 Orange 12 0.1
6 Brown 20 0.3
barplot(observed,names.arg=colors,col=gcolors,ylab='Counts')
title("Distribution of M&M Colors")
```


Distribution of M\&M Colors


```
pie(observed,labels=lbls,col=gcolors,main="Distribution of M&M Colors")
```


Distribution of M\&M Colors

chisq.test(observed, p=mars)\$expected
[1] $21.2 \quad 21.2 \quad 10.6 \quad 10.6 \quad 10.631 .8$
chisq.test(observed,p=mars)
Chi-squared test for given probabilities
data: observed
X-squared $=9.3145, \mathrm{df}=5, \mathrm{p}$-value $=0.09716$
H_{0} : M\&M colors are as stated by Mars
$H_{a}: H_{0}$ is not true
Assumptions:
(1) The data must be counts from categories: yes
(2) Independence of observations: yes
(3) $E_{i} \geq 5$; individual expected values must be at least 5

Organization of information:
$d f=k-1=6-1=5$ where $k=$ number of categories (candy colors)
$\alpha=0.05$ (assumed because not specifically stated otherwise)
$\chi^{2}=9.3145, d f=5$, pvalue $=0.09716$
Results: pvalue $=0.09716 \not \leq \alpha(0.05) \therefore H_{0}$ is not rejected
Conclusion: since the null is not rejected, the distribution of M\&M colors follow the population colors stated by Mars

Error: since H_{0} was not rejected, a Type II error (failing to reject null when null is false) could have been made; we think the distribution of M\&M colors follow the population colors stated by Mars but they do not.

Doh. . . wrong Homer

Homer's Iliad is an epic poem, compiled around 800 BCE , that describes several weeks of the last year of the 10 -year siege at Troy (Ilion) by the Achaean. The story centers on the rage of the great warrior Achilles. But it includes many details of injuries and outcomes, and is thus the oldest record of Greek medicine. Below is a table of 146 recorded injuries for which both injury site and outcome are provided in the lliad. Is there an association between injury site and outcome of survival?

	Lethality		
Site	Fatal	Not fatal	Total
Body	61	6	$\mathbf{6 7}$
Head/neck	44	1	$\mathbf{4 5}$
Limb	13	21	$\mathbf{3 4}$
Total	$\mathbf{1 1 8}$	$\mathbf{2 8}$	$\mathbf{1 4 6}$

$\begin{array}{lcr}\text { doh } & \\ & \text { Lethality } \\ & \\ \text { Site } & \text { Fatal } & \\ \text { Body } & 61 & 6 \\ \text { Head/neck } & 44 & 1 \\ \text { Limb } & 13 & 21 \\ \text { barplot }(t)(\text { doh }), \operatorname{col=c}(1,4))\end{array}$

chisq.test (doh) \$expected
Lethality
$\begin{array}{lrr}\text { Site } & \text { Fatal } & \text { Not fatal } \\ \text { Body } & 54.15068 & 12.849315 \\ \text { Head/neck } & 36.36986 & 8.630137 \\ \text { Limb } & 27.47945 & 6.520548\end{array}$
chisq.test(doh)
Pearson's Chi-squared test
data: doh
X-squared $=52.647, \mathrm{df}=2, \mathrm{p}$-value $=3.698 \mathrm{e}-12$
H_{0} : Wound site and survival were independent at the Battle of Troy
$H_{a}: H_{0}$ is not true
Assumptions:
(1) The data must be counts from categories: yes
(2) Independence of observations: yes
(3) $E_{i} \geq 5$; individual expected values must be at least 5

Organization of information:
$d f=(r-1)(c-1)=(3-1)(2-1)=2$
$\alpha=0.05$ (assumed because not specifically stated otherwise)
$\chi^{2}=52.647, d f=2$, pvalue $=3.698 \mathrm{e}-12=3.698 \times 10^{-12} \approx 0$
Results: pvalue $\approx 0 \leq \alpha(0.05) \therefore H_{0}$ is rejected
Conclusion: since the null is rejected, there is sufficient evidence that there is an association (they are dependent) between injury site and outcome of survival

Error: since H_{0} was rejected, a Type I error (reject null when null is true) could have been made; we think there is an association between injury site and outcome of survival but there is not

