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Simple Linear Regression (slr)
• SLR analysis explores the linear association between an explanatory (independent) variable, usually

denoted as x, and a response (dependent) variable, usually denoted as y
• This type of data is called bivariate data (data with two (bi) variables)
• The point is to see if we can use a mathematical linear model to describe the association (relationship)

between the two variables
• Using one known value to estimate the other value, in addition to seeing how strong the relationship is
• You are familiar with y = mx+ b from algebra, where m is the slope and b is the y-intercept (value of
y when x = 0), which is a mathematical linear equation, a deterministic equation.

The population regression model
Notice that it is basically the same as you have seen and used before (y = mx+ b):

yi = β0 + β1xi + εi

Where:

• yi: value of the response (dependent) variable
• β0: the value of the y-intercept (when x = 0)
• β1: the value of the slope (the change in y due to a one unit increase in x, not rise

run )
• εi: the residual (error) term

The sample regression model
Is used once there are estimated values from the data:

ŷi = β̂0 + β̂1xi

Where:

• ŷi: estimate of the value of the ith response (dependent) variable

• β̂0: the estimate of the value of the y-intercept (ŷ when x = 0)

• β̂1: the estimate of the value of the slope (the change in y due to a one unit increase in x. Not rise
run )

• Note that εi dropped off from the other model. This is because of the first assumption of regression,
E(εi) = 0: the mean of the residuals = 0.
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Assumptions of SLR
(1) E(εi) = 0: the mean of the residuals is ≈ 0
(2) V (εi) = σ2

ε : the variance of the residuals is constant (the same) for all values of ŷ. Also called constant
variance, homogeneity of variance (means same variance)

(3) Cov(εi, εj) = 0: independence of residuals
(4) εi ∼ N(0, σ2

ε ): Residuals have an approximate normal distribution with mean 0 and homogeneous
variance

Least Squares
The method most common for regression parameter estimation is called least squares. This method evaluates
the quality of a line’s fit to the data by the sum of the squared vertical distances of each point (Xi, Yi) from
the line. Those distances are called residuals (also referred to as errors).

Residuals
Residuals: εi are the population residuals and ε̂i = ei are the sample residuals

ei = yi − ŷ. If ei > 0, the model understimated the response and if ei < 0, the model overstimated the
response.

s2
ε =

∑
(yi−ŷi)2

n−2 the average squared distance between each estimated y and the observed value of y, called
MSE, mean squared error, or residual variance (the variance of the residuals).

sε =
√∑

(yi−ŷi)2

n−2 the average distance between each estimated y and the observed value of y, called RMSE,
root mean squared error, or residual standard error (the standard error of the residuals).

Analysis tools: scatterplot graph
• First thing that is necessary is to look at a scatterplot of the two variables; it is a type of graph that

you are familiar with from algebra
– x is the explanatory (independent) variable and goes along the x-axis
– y is the response (dependent) variable and goes along the y-axis

• The values of x and ŷ are an ordered pair of data, (x, ŷ) that can be graphed on the cartesian
(rectangular) coordinate system

• The value of x that will be given is most often one that is an observed value of x so that an estimation
of the residual, ei = ŷi − yi can be calculated.

Analysis tools: scatterplot graph
• A scatterplot of the data shows if there is a linear association between the explanatory (independent)

variable and the response (dependent) variable
– When x and y both increase, the slope (relationship) is positive
– When x increases while y decreases, the slope (relationship) is negative

• The point of visually checking the scatterplot before doing the regression analysis is decide if there is
at least a fair linear relationship between x and y
– If you do not have a linear relationship, then use of regression analysis is not recommended as the

results cannot be used with the given dataset
• The regression line is also called a trend line.

Module example data
With the example throughout this lecture will be Old Faithful; eruptions is the duration of the eruption of
Old Faithful and waiting is the interval between eruptions, both in minutes. Eruptions will be the explanatory
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(independent) variable and waiting will be the response (dependent) variable, modelling waiting time by
eruption duration; in other words, we are using the eruption time to estimate the time until the next eruption.
Let x=eruptions and y=waiting.

eruptions waiting
1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55

Analysis tools: scatterplot graph
This has positive slope (x increases and y increases)
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Analysis tools: scatterplot graph
This has negative slope (x increases and y decreases)
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Analysis tools: scatterplot graph
This has 0 slope (and a lot of random scatter)
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Analysis tools: scatterplot graph
This has 0 slope
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Analysis tools: scatterplot graph with regression line
Many times in regression, we want to see what the line of the regression equation will look like on the
scatterplot of the raw data. It is not strictly necessary but the point of this analysis is to explore and
understand the linear relationship between two variables. If you do not have a linear relationship, then use of
this analysis is not recommended as the results cannot be used with the given dataset. The regression line is
also called a trend line.

Analysis tools: scatterplot graph with regression line
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Slope and intercept formulas
Slope:

β̂1 =
∑

(xi − x)(yi − y)
s2
x(n− 1) = SXY

SXX
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Intercept:

β̂0 = y − bx

Old Faithful Equation
ŷ = β̂0 + β̂1x⇒ ŷ = 33.474397 + 10.729641x

Using the regression equation
Use of the equation works just like you are used to; given a specified value of x, solve the equation for the
estimated y value called ŷ (y-hat)

Find the values of ŷ and ei for each of the following values: (2.283, 62), (5.1, 96)

ŷ|x=2.283 = 33.474397 + 10.729641 ∗ 2.283 = 57.970168

ŷ|x=5.1 = 33.474397 + 10.729641 ∗ 5.1 = 88.195568

Using the regression equation
e|x=2.283 = 62− 57.970168 = 53.021374

e|x=5.1 = 96− 88.195568 = 87.021374

Since both ei > 0, the model understimated the waiting times.

Correlation
To determine the strength of the relationship between two quantitative variables, we use a measure called
correlation

Defn: Is a calculation that measures the strength and direction (positive or negative) of the linear relationship
between 2 quantitative variables, x and y

Correlation 6= causation

It is extremely important to note that just because two variables have a mathematical correlation IT DOES
NOT MEAN X CAUSES Y !!!. To establish actual causation, repeatable experimentation must be done.

Correlation logistics
• It is bounded between -1 and 1 (−1 ≤ r ≤ 1)

– r = −1 and r = 1 are perfect linear relationships

– r = 0 implies both no linear relationship and x, y are independent

• r makes no distinction between x and y

• r has no units of measurement
• Correlation is denoted as r for sample correlation and ρ for the population correlation.

r = 1
n− 1

∑ (xi − x̄)(yi − ȳ)
sxsy
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Coefficient of Determination, R2

R2 is called the coefficient of determination:

• It is the proportion (or ×100%) of observed variation that can be explained by the relationship between
x and y

• 0 ≤ R2 ≤ 1: It is bounded between 0 (0%) and 1 (100%)
– The closer to 1 (100%), the more variation we can explain and also the stronger the linear

relationship between x and y
∗ An acceptable baseline for R2 would be when R2 ≥ 60%

• R2 = (r)2 ∴ r = ±
√
R2

– if the slope is positive, then r is positive, if the slope is negative, then r is negative.

Analysis tools: scatterplot graph
Relatively strong, positive correlation
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Analysis tools: scatterplot graph
Moderately strong, negative correlation
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Analysis tools: scatterplot graph
No correlation
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Analysis tools: scatterplot graph
No correlation but there is a relationship, it is not a linear relationship
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General rule-of-thumb for correlations
r ≈ 0: no linear relationship
r > |0.9|: strong linear relationship
|0.75| < r ≤ |0.9|: decent linear relationship
|0.6| < r ≤ |0.75|: moderate linear relationship
|0.4| < r ≤ |0.6|: fair linear relationship (meh)
|0.2| < r ≤ |0.4|: weak linear relationship
0 < r ≤ |0.2|: no real linear relationship

Old Faithful r and R2

r = 1
n− 1

∑ (xi − x̄)(yi − ȳ)
sxsy

= 0.900811

There is a strong, positive linear relationship between eruptions and waiting of Old Faithful.

R2 = (r)2 = (0.900811)2 = 0.811461 ≈ 81.15%

We can explain approximately 81.15% of the variation in the response (waiting times) due to the linear
relationship between x and y (which is good).

Hypothesis tests for the estimated slope (β1) and intercept (β0)
• Most often the slope β̂1 is the only real test of interest

• Many times the value of x = 0 is not in the dataset (or the fact that mabye x = 0 is not possible in the
population the data was sampled from). Without x = 0 in the dataset (or even possible at all), the
intercept does not make sense in context

• Additionally, the slope is what is driving the relationship whereas the intercept just represents the
value where the regression line crosses through the y-axis

• There are some economic datasets and many others that utilize the intercept because it make sense
both mathematically and realistically.
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Hypothesis tests for the estimated slope (β1) and intercept (β0)
• The null hypothesis for the slope is to test if the slope is equal to zero

– A slope of zero is a horizontal line, where any value of x has the same y value
• Most often of interest is whether or not it is significant, the alternative hypothesis is to see if the slope

is different from zero
– Realistically the hypothesized value could be something other than 0 if there is a need, like seeing

if it has increased or decreased since the previous sample was taken and analyzed

Test for β1, the slope
Hypotheses:

H0 : β1 = 0 vs. Ha : β1 6= 0

Test Statistic:

t = β̂1 − β1

seβ̂1

• The seβ̂1
and df = n− 2 are the same as for CIs

• Rejection criteria is the same as the t-tests learned in earlier modules (starting in module 9). Rejection
of the null means the slope is significant; there is a significant relationship between x and y. Not
rejecting the null means there is no significant relationship between x and y

Test for β0, the intercept
Hypotheses:

H0 : β0 = 0 vs. Ha : β0 6= 0

Test Statistic:

t = β̂0 − β0

seβ̂1

• The sea and df = n− 2 are the same as for CIs
• Rejection criteria is the same as the t-tests learned in earlier modules (starting in module 9). Rejection

of the null means the intercept is significant. Not rejecting the null just means the intercept is not
significant (but has no impact on the significance of the slope)

Reading R output
The following picture is a printout of a regression summary table from fit=lm(y~x,data= ) and
summary(fit)

10



Notes on R output
R does not directly display correlation r in the regression output but it does display the R2 value (called
Multiple R-squared)

Remember r = ±
√
R2, and use the sign of the slope to determine if r is positive or negative

It is a proportion in the output but can be converted to a percent easily; it usually is when discussing its
results

CIs and PIs (prediction intervals) for slope, intercept, µ̂, or ŷ can be calculated but is not covered in this
course

Old Faithful Output

Call:
lm(formula = waiting ~ eruptions, data = faithful)

Residuals:
Min 1Q Median 3Q Max

-12.080 -4.483 0.212 3.925 15.972

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.474 1.155 29.0 <2e-16 ***
eruptions 10.730 0.315 34.1 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 5.91 on 270 degrees of freedom
Multiple R-squared: 0.811, Adjusted R-squared: 0.811
F-statistic: 1.16e+03 on 1 and 270 DF, p-value: <2e-16

Test for β1

Hypotheses:
H0 : β1 = 0 vs. Ha : β1 6= 0

H0 can be rejected if pvalue ≤ α, which can be found on the output.

The procedure will require you to state the test statistic, pvalue, results, and conclusion.

t = 34.09, pvalue = 2e-16 = 2× 10−16 = 0.0000000000000002 ≈ 0 ≤ α(0.05). The null is rejected, meaning
the slope is significant (also means the relationship between x and y is significant).

r and R2

R2 (Multiple R-squared) is 0.8115 meaning that 81.15% of the variation in the estimated response is explained
by the linear relationship modeled with x and y

r could be calculated as r = +
√
R2 = +

√
0.8115 = 0.9

It is positive since the slope is positive (if r > 0 then β1 > 0, if r < 0 then β1 < 0, and vice versa)

Model assessment
The null hypothesis for the slope was rejected (slope is significant), both r and R2 are high, implying a strong
linear relationship and 81% explainable variation in the response. This means that we have a decent model.

Notation
• β̂0: sample intercept
• β̂1: sample slope
• ŷ: estimated value of y, called y-hat
• ei: sample residual (estimate of εi), ei = ŷi − yi (estimated y-observed y)
• y = β0 + β1x+ ε: population model
• ŷ = β̂0 + β̂1x: sample regression equation
• s2

ε : sample residual variance, variance of residuals
• sε: sample residual standard error, standard error of residuals
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