Normal Distribution

Module 6

Statistics 251: Statistical Methods

Updated 2021

Normal

The normal distribution is a very important continuous distribution since many things naturally have a normal distribution. It is widely used and widely abused.
IQ scores, often real-estate prices, and even grades mostly follow a normal distribution (I do not grade "on the curve" because I would rather that most get As and Bs).

We will investigate the normal distribution, standard normal distribution, and applications thereof.

Terms

The normal distribution has two parameters: mean (μ) and standard devaition (σ).

$$
\text { Shorthand notation: } X \sim N(\mu, \sigma)
$$

The probability density function (pdf) for a normal distribution is:

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

To use this, you would have to use calculus but we will not have to, there is another (easier) way to calculate probabilities.

Normal Graph

With mean $\mu=100$ and standard deviation $\sigma=15$, thus

Standard Normal Distribution

The standard normal distribution is a normal distribution of standardized values, called z-scores. The z-scores are measured in units of the standard deviation. It is always centered at 0 and always has a standard deivation of 1 , thus $Z \sim N(0,1)$.

Z-score logistics I

If $X \sim N(\mu, \sigma)$ then

$$
z=\frac{X-\mu}{\sigma}
$$

The z-score tells you how many standard deviations you are in relation to the mean. If $z=-1$, that is one standard deviation below the mean, if $z=1$, that is one standard deviation above the mean. Values of x that are smaller than the mean will have negative z-scores, x values that are larger than the mean will have positive z-scores. If x is equal to the mean, then it has a z-score of 0 . Z-scores allow comparison of data that are on different scales

Z-score logistics II

The Empirical Rule is derived from the normal distribution:
68% of observations are within the interval $\bar{X} \pm 1 s$
95% of observations are within the interval $\bar{X} \pm 2 s$
99.7% of observations are within the interval $\bar{X} \pm 3 \mathrm{~s}$
One of the examples from the Standard Normal examples will show the area between -1 and 1

Standard Normal Graph

With mean $\mu=0$ and standard deviation $\sigma=1$, thus

Z

Standard Normal Example

With z-scores:
$P(Z<1)$
$P(Z>1)$
$P(Z<-1)$
$P(Z>-1)$

$$
P(-1<Z<1)
$$

z-score for top 1%
z-score for $Q 1$
z-score for $Q 3$

Normal Example I

Suppose that $X \sim N(68,3)$ for golf scores of a high school team. Find:
$P(X<65)$
$P(X<68)$
$P(X>70)$
$P(60<X<69)$
Top 5% of golf scores
$I Q R$ of golf scores

Normal Example II (bahaha)

What is normal?
Spongeboob
Spongeboob II

Standard Normal Solutions

With z-scores:
$P(Z<1)=0.841345$
$P(Z>1)=0.158655$
$P(Z<-1)=0.158655$
$P(Z>-1)=0.841345$
$P(-1<Z<1)=0.682689$
(Empirical Rule derivation)
$P(-2<Z<2)=0.9545$
$P(-3<Z<3)=0.9973$
Normal Solutions I part 1
$P(X<65)=P\left(Z<\frac{65-68}{3}\right)=P(Z<-1)=0.158655$
$P(X<68)=0.5$ (because the mean is 68 and z will be 0 , which is in the center)
$P(X>70)=P\left(Z<\frac{70-68}{3}\right)=P(Z>0.67)$
$=1-P(Z<0.67)=0.251429$
$P(60<X<69)=P\left(\frac{60-68}{3}<Z<\frac{69-68}{3}\right)$
$=P(-2.67<Z<0.33)=0.625507$

Normal Solutions I part 2

Top 5% of golf scores: find z with tail area to the right of 0.05 (same as bottom 95%)
$z=1.644854$ and solve for X where $x=z \sigma+\mu \Rightarrow$
$x=(1.644854)(3)+68=72.934561$
$I Q R$ of golf scores: find $z_{0.25}$ and $z_{0.75}$, and solve for the two values of X , then calculate the IQR.
$z_{0.25}=-0.67449$ and $z_{0.75}=0.67449$.
Now $x_{Q 1}=(-0.67449)(3)+68=65.976531$ and
$x_{Q 3}=(0.67449)(3)+68=70.023469$
$I Q R=4.046939$

Normal Solutions II

There is no solution for a normal Spongebob. . . he will be crazy forever. . . forever. . . forever...

