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Random variables
Quantities that vary at random are called random variables; they are akin to a mathematical function, and
many process generate random variables. Think of capture-and-release methods to study birds and measure
their beak length, every different bird measured will vary to some degree. When a process is repeated, it
is typical for a new proportion to occur. The proportion of successes is a quantity that will vary during
repeated sampling.

In science random variable are important because they are typically counts or measurement produced by
some process by which scientific data are generated. Science is full of quantities that vary: amount of daily
rainfall at a weather station, household income among households in a city, growth yields of wheat under
certain conditions, distances of galaxies from Earth, the number of craters in 100-km2 areas on Venus, and
the list can go on. Think about a process and most of the time they could be considered random variables.

Probability
What can possibly be learned from processes that have varying levels of outcomes? Look for variability in
the patterns of the outcomes.

The study of ways to make reliable conclusions from outcomes of random variables is the branch of science
called statistics. The main driving force of statistics is in building and testing mathematical models of how
the outcomes arise, and for use as hypotheses about our understanding of the processes involved. The study
of patterns and randomness is a branch of mathematics called probability.

Probability
Law of Large Numbers (LLN): if a random process could be repeated many, many, many, many times,
the long-run proportion of successes will stabilize and get closer and closer to the theoretical probability. For
a small number of repetitions, considerable variation can be expected to happen.

and the next day. . . and the next day. . . and the next day. . .

LLN
RAND(‘FXN’,parm1,parm2,. . . ) - function will return with the same random sequence each time for the
particular seed function will return with a vector of 0s and 1s (0=failure, 1=success) The idea is to use the
function to simulate samples of size 5, then size 6, size 7, and so on until maybe 500. For each block, the
mean is calculated and look at the variability in the means decreasing.

Simulation of LLN
data lln;
call streaminit(7777);
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https://www.youtube.com/watch?v=yHIX7O8wQNQ


do i=5 to 500;
x=rand('bern',0.2);
output;

end;
run;
data lln;
set lln;
sum+x;
phat=sum/_n_;

run;

proc sgplot data=lln;
series x=i y=phat;
refline 0.2/axis=y;
run;

LLN plot

LLN
You can see in the graph, as we take more and more samples, the variation is reducing and the probability
will converge to a single number (the theoretical probability).

In practice, an event probability might never actually be known but rather estimated from many trials.
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Probability distribution of counts
Rather than an average now, suppose we keep track of the number of successes. In simulated samples of size
30 for 10,000 iterations, the collection of the possible outcomes (0, 1, . . . , 30) of the random variable (successes
out of n trials) along with the probabilities of the outcomes is called the probability distribution of a sample.

Binomial distribution
Basically what was just simulated (the sum of the outcomes) is a type of probability distribution called the
binomial distribution. A random process that produces a binomial distribution has the following properties
(1) There are a fixed number of trials n, with only two possible outcomes (success (S) or failure (F)) (2) For
each trial, the probability of success p is the same (3) Trials are independent of each other (the outcome
on any one trial has no effect on the outcome of any other trial) (4) The random variable is the count of y
successes from n trials.

Binomial distribution function
The probability of y successes from n trials is

P (Y = y) =
(
n

y

)
py(1− p)n−y

(
n

y

)
= n!
y!(n− y)!

The mean (E(Y )), variance (V (Y )), and standard deviation (SD(Y )):

E(Y ) = np V (Y ) = np(1− p) SD(Y ) =
√
V (Y )

SAS functions for binomial distribution
PDF ('BINOMIAL',m,p,n)= P (Y = y) or P (X = x)
PROBBNML(p,n,m)= P (Y ≤ y) (less than or equal to argument; a range)

p: probability of success (0 ≤ p ≤ 1)
n: sample size
m: is a numeric constant, variable, or expression that specifies an integer number of successes (argument)

P (Y > y) = 1− binom(y) and P (Y ≥ y) = 1− P (Y < y)

PMF example
title 'PMF: Y~bin(n=10,p=0.26)';
data args;
p=.26;
n=10;
do y=0 to n;
output; end;
run;
data bin1;
set args;
py=PDF('BINOMIAL',y,p,n);
run;
proc print data=bin1;
var y py;
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run;

PMF bin

PMF plot
proc sgplot data=bin1;
needle x=y y=py;
xaxis values=(0 to 10);
run; quit;
title;
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PMF bin plot

plot.png

CDF example
title 'CDF: Y~bin(n=10,p=0.26)';
data bin2;
set args;
cdfy=probbnml(p,n,y);
run;
proc print data=bin2 label;
var y cdfy;
label cdfy='py';
run;
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CDF bin

CDF plot
proc sgplot data=bin2;
scatter x=y y=cdfy;
series x=y y=cdfy;
xaxis values=(0 to 10);
yaxis label='py';
run; quit;
title;
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CDF bin plot

plot.png

random sample
Generates 20 random values from binom with n=30,p=.26

title 'Y~bin(n=20,p=0.26)';
data rbin;
do x=0 to 20;
px=ranbin(7777,30,0.26);
output;

end;
run;
proc sgplot data=rbin;
needle x=x y=px;
xaxis values=(0 to 20);
run; quit;
title;
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Random bin sample plot

plot1.png

Probability distributions of measurements
Life is discrete; every measurement device we have is limited to a certain degree of accuracy, like to the
second decimal place. The set of measurements that can be output by the device is a discrete set, meaning
we can count the members of the set. Even the set of numbers that can be stored in the floating point system
on a computer is a discrete set (granted, it is a large set).

Discrete vs. continuous
Members of the set of real numbers in a interval, say between 0 and 1, cannot be “counted” like the members
of a discrete set. Real numbers are a mathematical abstraction beyond our everyday experience; there are
numerous circumstances in science in which modeling the numerical output of some phenomenon as a set of
real numbers offers great calculation convenience at little expense of realism.

In probability, if the range of output of a random process is “fine-grained” with many possible values, we
can often achieve great simplification by using a continuous probability distribution to model the process. A
random variable with a continuous probability distribution takes a real values within a range (interval) of
possible values.
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Uniform distribution
When a random variable has a continuous probability distribution, we assign probabilities to intervals instead
of individual numbers. In earlier modules, we have used the uniform distribution. The random variable U
takes a real value between 0 and 1 (in computers U takes on a value from any of the possible 16-decimal
place numbers between 0 and 1). The probability that U takes on a value between a and b is b− a where
0 ≤ a ≤ b ≤ 1, that is

P (a ≤ U ≤ b) = b− a

Normal distribution
For probabilities for area to the left, use PROBNORM(); for area to the right use 1-PROBNORM(); for area
between two values (a<b) use PROBNORM(b)-PROBNORM(a).

P (Y = y) = dne because Y is continuous

PROBNORM(x)
x: (y) argument; z-score or formula; mean and standard deviation are assumed Z ∼ N(µ = 0, σ = 1)

Y ∼ N(µ, σ)

With z = y−µ
σ

Normal example
Y ∼ N(500, 100)

data norms;
mu=500;
sd=100;
p1=probnorm((600-mu)/sd); *P(Y<600);
p2=1-probnorm((600-mu)/sd); *P(Y>600);
p3=probnorm((700-mu)/sd)-probnorm((400-mu)/sd); *P(400<Y<700);
run;
proc print data=norms;
run;

Normal probabilities

Central Limit Theorem (CLT)
defn: The sampling distribution of the sample mean (or other sample statistic) will be approximately normal
with mean µ and standard deviation of the sampling distribution of the sample mean σȳ = σ/

√
n (aka

standard error), provided n is sufficiently large.
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Examples of CLT with the poisson and binomial distributions.

CLT Poisson
%let NumSample=100;
%let SampleSize=10000;
%let lambda=3;
data pois;
call streaminit(7777);
do sample=1 to &NumSample;
do n=1 to &SampleSize;
po=rand("Poisson",&lambda);
output;

end;
end;

run;
proc sgplot data=pois;
histogram po;
run; quit;

Random poisson

plot.png
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Poisson means
proc means data=pois noprint mean;

class sample;
output out=pois_means(where=( _TYPE_=1 & _STAT_='MEAN'));

run;
proc print data=pois_means;
run;
title 'Sampling distribution of the mean';
proc sgplot data=pois_means;

histogram po / scale=count;
density po / type=normal;

run;
title;

Poisson means

plot.png

CLT binomial
%let NumSample=100;
%let SampleSize=10000;
%let p=.8;
data bin;
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call streaminit(7777);
do sample=1 to &NumSample;
do n=1 to &SampleSize;
bo=rand("Binomial",&p,&SampleSize);
output;

end;
end;

run;
proc sgplot data=bin;
histogram bo;
run; quit;

Random binomial

plot2.png

Binomial means
proc means data=bin noprint mean;

class sample;
output out=bin_means(where=( _TYPE_=1 & _STAT_='MEAN'));

run;
proc print data=bin_means;
run;
title 'Sampling distribution of the mean';
proc sgplot data=bin_means;

histogram bo / scale=count;
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density bo / type=normal;
run;
title;

Binomial means

plot.png
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