
Iterative Data Processing
Statistics 426: SAS Programming

Module 6

2021

Interative data processing
1 1 2 3 5 8 13 21 . . .

Silly of me to ask. :-) It is the Fibonacci sequence, and we will create a loop to do calculations of the sequence
in this module

Iterative refers to a systematic, repetitive, and recursive process in qualitative data analysis. An iterative
approach involves a sequence of tasks carried out in exactly the same manner each time and executed multiple
times

Using the IF family
IF-THEN (IF-THEN/ELSE) statement(s) can only have one executable statement.

IF expression THEN statement;

IF-THEN/DO statements are similar to the IF-THEN statements, but the IF-THEN/DO statements can
have multiple executable statements unlike the IF-THEN statements

IF-THEN/ELSE I
Setting bonus based on country

libname herc 'S:\Courses\stat-renaes\Stat426\sasdatafiles';

data bonus;
set herc.sales;
if country='US' then Bonus=500;
else if country='AU' then Bonus=300;

run;

proc print data=bonus;
var First_Name Last_Name Country Bonus;

run;

1



IF-THEN/ELSE I print

2



IF-THEN/ELSE I log

IF-THEN/ELSE II
data bonus;

set herc.sales;
if country='US' then Bonus=500;
else Bonus=300;

run;

proc print data=bonus;
var First_Name Last_Name Country Bonus;

run;

3



IF-THEN/ELSE II print

4



IF-THEN/ELSE II log

General form of IF-THEN/DO
IF expression THEN DO;
<executable statements>;
END;

ELSE IF expression THEN DO;
<executable statements>;
END;

Each DO group can contain multiple executable statements that apply to each expression, and each DO
group must end with an END statement

if then do
Setting bonus based on country and signifying occurrence

data bonus;
set herc.sales;
if country='US' then do;

Bonus=500;
Freq='Once a Year';

end;

else if country='AU' then do;
Bonus=300;
Freq='Twice a Year';

end;
run;

proc print data=bonus;

5



var First_Name Last_Name Country Bonus;
run;

if then do print

6



if then do log

Constraints of IF-THEN/DO
If we need to run many of these statements at once, writing out many DO groups is time consuming.

Ex: Want to find annual and quarterly compounded interest for 20 years (80 quarters), with 100 total
statements needed to compute this. Is there an easier way? (of course, or why would I ask, right?)

We can use a DO loop to take care of multiple DO statements.

General form of DO loops
DO index-variable = start TO stop <BY increments>;
Iterated SAS statements... ;
<OUTPUT>;
END;

start: specifies initial value of the index-variable
stop: specifies the ending value of the index-variable
increment: specifies a positive or a negative number to control the incrementing of the index-variable
<output>: an option to display all iterations of the index-variable

Executes statements between the DO and the END statements repetitively, based on the value of an
index-variable

7



Start and stop logistics
Start, stop and increment values: must be numbers or expressions that yield results, are established before
executing the loop and if omitted, the increment defaults to 1
- When increment is positive, start must be the lower bound and stop must be the upper bound
- When increment is negative, start must be the upper bound and stop must be the lower bound

Index-variable details
- The index-variable is written, by default, to the output dataset
- At the termination of the loop, the value of index-variable is one increment beyond the stop value

Basic do loop forward I
data one;
do i=1 to 5;
end;
run;

proc print data=one;
run;

Basic do loop forward I print

8



Basic do loop forward I log

Basic do loop forward II
data two;
do j=2 to 8 by 2;
end;
run;

proc print data=two;
run;

Basic do loop forward II print

9



Basic do loop forward II log

Basic do loop backward
data three;
do k=10 to 2 by -2;
end;
run;

proc print data=three;
run;

Basic do loop backward print

10



Basic do loop backward log

Writing loop for the Fibonacci sequence
First we need to identify the math equation we could use. So, the sequence starts at 1, then the second value
is the sum of the two previous values, which is again 1. The third value of the sequence is the sum of the first
two values (1+1=2), the fourth is the sum of the two preceding values (2+1=3), and so on.

There is a sum function and a lag function to use here. The sum function does exactly what it sounds like
(summing a variable or specified list of numbers). Lag is similar, it will retrieve the last value.

Use sum to calculate the next value of the sequence to sum the current position’s value and the previous
value (with lag).

Let ri be the ith value of the Fibonacci sequence.

ri of Fibonacci
r1 = 1, r2 = 1, r3 = 2, r4 = 3, . . .

The sequence would look like:

ri+1 = ri + ri−1

The next value of the sequence (ri+1) is the sum of the two preceding values (ri + ri−1).

Fibonacci loop
data fseq;
do i = 1 to 10;

fib = sum(fib, lag(fib));
if i eq 1 then fib = 1;
output;
end;

run;
proc print data=fseq;

11



run;

Fibonacci loop print

12



Fibonacci loop log

Conditional iterative processing
You can use DO WHILE and DO UNTIL statements to stop the loop when a condition is met rather than
when the loop is executed a specific number of times. To avoid infinite loops, be sure that the specified
condition will be met.

Visualize loop process
The following diagram shows the logic and path the different loops take.

DO WHILE statement
DO WHILE executes statements in a DO loop repetitively while a condition is true

13



General form of DO WHILE

DO WHILE (expression);
<additional SAS statements>;

END;

The value of expression is evaluated at the top of the loop and the statements in the loop never execute if
expression is initially false

do while
data dowhile;

do Year=1 to 30 while(Capital<=250000);
Capital+5000;
Capital+(Capital*.045);

end;
run;

proc print data=dowhile noobs;
format Capital dollar14.2;

run;

do while print

14



do while log

DO UNTIL statement
DO UNTIL executes statements in a DO loop repetitively until a condition is true. Once the condition is
met, the loop is finished with its calculations

General form of DO UNTIL

DO UNTIL (expression);
<additional SAS statements>;

END;

The value of expression is evaluated at the bottom of the loop, the statements in the loop are executed at
least one time, and though the condition is placed at the top of the statement, it is evaluated at the bottom
of the loop

do until
data dountil;

do until(Capital>1000000);
Year+1;
Capital+5000;
Capital+(Capital*.045);

end;
run;

proc print data=dountil noobs;
format Capital dollar14.2;

run;

15



do until print

do until log

Nesting loops
Nested DO loops: are DO loops within DO loops
- Be sure to use different index variables for each loop
- Each DO statement must have its own corresponding END statement
- The inner loop executes completely for each iteration of the outer loop

General form of nested DO loops
DO index-variable1=start TO stop

<BY increment>;
<OUTPUT>;

DO index-variable2=start TO stop

16



<BY increment>;
<OUTPUT>;
END;

END;

The OUTPUT statement can be used (and will be in our Fibonacci loop) to make sure we get a value output
to the dataset for each iteration

nested do loop
data nested;

do Year=1 to 5;
Capital+5000;
do Quarter=1 to 4;
Capital+(Capital*(.045/4));
output;

end;
output;

end;
run;

proc print data=nested noobs;
format Capital dollar14.2;

run;

17



nested do loop print

18



nested do loop log

Alt nested
Alternative method not showing the quarter variable

data nested(drop=Quarter);
do Year=1 to 5;
Capital+5000;
do Quarter=1 to 4;
Capital+(Capital*(.045/4));

end;
output;

end;
run;

proc print data=nested noobs;
format Capital dollar14.2;

run;

19



Alt nested print

Alt nested log

20


	Interative data processing
	Using the IF family
	IF-THEN/ELSE I
	IF-THEN/ELSE I print
	IF-THEN/ELSE I log
	IF-THEN/ELSE II
	IF-THEN/ELSE II print
	IF-THEN/ELSE II log
	General form of IF-THEN/DO
	if then do
	if then do print
	if then do log
	Constraints of IF-THEN/DO
	General form of DO loops
	Start and stop logistics
	Basic do loop forward I
	Basic do loop forward I print
	Basic do loop forward I log
	Basic do loop forward II
	Basic do loop forward II print
	Basic do loop forward II log
	Basic do loop backward
	Basic do loop backward print
	Basic do loop backward log
	Writing loop for the Fibonacci sequence
	r_i of Fibonacci
	Fibonacci loop
	Fibonacci loop print
	Fibonacci loop log
	Conditional iterative processing
	Visualize loop process
	DO WHILE statement
	do while
	do while print
	do while log
	DO UNTIL statement
	do until
	do until print
	do until log
	Nesting loops
	General form of nested DO loops
	nested do loop
	nested do loop print
	nested do loop log
	Alt nested
	Alt nested print
	Alt nested log

