[terative Data Processing
Statistics 426: SAS Programming

Module 6

2021

Interative data processing

1123581321 ...
Silly of me to ask. :-) It is the Fibonacci sequence, and we will create a loop to do calculations of the sequence
in this module

Iterative refers to a systematic, repetitive, and recursive process in qualitative data analysis. An iterative
approach involves a sequence of tasks carried out in exactly the same manner each time and executed multiple
times

Using the IF family
IF-THEN (IF-THEN/ELSE) statement(s) can only have one executable statement.
IF expression THEN statement;

IF-THEN/DO statements are similar to the IF-THEN statements, but the IF-THEN /DO statements can
have multiple executable statements unlike the IF-THEN statements

IF-THEN/ELSE 1

Setting bonus based on country

libname herc 'S:\Courses\stat-renaes\Stat426\sasdatafiles’;

data bonus;

set herc.sales;

if country='US' then Bonus=500;

else if country='AU' then Bonus=300;
run;

proc print data=bonus;
var First_Name Last_Name Country Bonus;
run;

IF-THEN/ELSE I print

58 Koavea Pa Al 300
59 | Franca Kierce Al 300
60 Billy Flested Al 300
61 | Matsuoka Wills Al 300
62 Vino George Al 300
63 Meera Body Al 300
64 Harry Highpoint S 500
65 Julienne Magolan US 500
66 Scott Desanctis US 500
67 Cherda Ridley Us 500
68 Pnscilla Farren US 500
69 | Robert Stevens US 500
10 Shawn Fuller US 500

1 | Michael Westlund Us 500

IF-THEN/ELSE I log

=] Log - (Untitled)
12 data bonus;

13 z=et herc.zales;

14 if country="US" then Bonus=500;
15 elsze Bonus=300;

16 run ;

MOTE: There were 165 obserwvations read from the data set HERC.SALES.
HOTE: The data =et HWOREKE .BOHUS has 165 observations and 10 variables.
NOTE: DATA =tatement used [(Total process time):

real time 0.04 zeconds
cpu time 0.01 zseconds
17
18 proc print data=bonus;
19 var Firzt_Hame Last_Name Country Bonus;
20 run;

HOTE: There were 165 observations read from the data set WORK.BOMUS.
NOTE: PRBOCEDUBE PRINT used [(Total process time):
real time Q.06 seconds
cpu time 0.04 zeconds

IF-THEN/ELSE I1

data bonus;
set herc.sales;
if country='US' then Bonus=500;
else Bonus=300;

run;

proc print data=bonus;
var First_Name Last_Name Country Bonus;

run;

IF-THEN/ELSE II print

58
59
60
61
62
63
64
65
66
67
66
69
70
71

Koavea
Franca
Billy
Matsuoka
Vino
Meera
Harry
Julienne
Scott
Cherda
Priscilla
Robert
Shawn

Michael

Fa
Kierce
Plested
Wills
George
Body
Highpoint
Magolan
Desanctis
Ridley
Farren
Stevens
Fuller

Westlund

Al
Al
Al
Al
Al
Al
US
USs
US
Us
US
USs
US
Us

300
300
300
300
300
300
500
500
500
500
500
500
500
500

IF-THEN/ELSE II log

=] Log - (Untitled)
12 data bonus;

13 z=et herc.zales;

14 if country="US" then Bonus=500;
15 elsze Bonus=300;

16 run ;

MOTE: There were 165 obserwvations read from the data set HERC.SALES.
HOTE: The data =et HWOREKE .BOHUS has 165 observations and 10 variables.
NOTE: DATA =tatement used [(Total process time):

real time 0.04 zeconds
cpu time 0.01 zseconds
17
18 proc print data=bonus;
19 var Firzt_Hame Last_Name Country Bonus;
20 run;

HOTE: There were 165 observations read from the data set WORK.BOMUS.
NOTE: PRBOCEDUBE PRINT used [(Total process time):

real time Q.06 seconds

cpu time 0.04 zeconds

General form of IF-THEN /DO

IF expression THEN DO;
<executable statements>;
END;

ELSE IF expression THEN DO;
<executable statements>;
END;

Fach DO group can contain multiple executable statements that apply to each expression, and each DO
group must end with an END statement

if then do
Setting bonus based on country and signifying occurrence

data bonus;
set herc.sales;
if country='US' then do;
Bonus=500;
Freq='Once a Year';
end;

else if country='AU' then do;
Bonus=300;
Freq='Twice a Year';
end;
run;

proc print data=bonus;

var First_Name Last_Name Country Bonus;

run;

if then do print

36
o
58
a9
60
61
62
63
64
63
66
67
68
63
70
71

%

Doungkamol
Andrew
Koavea
Franca
Billy
Matsuoka
Vino
Meera
Harry
Julienne
Scott
Cherda
Priscilla
Robert
Shawn

Michael

O e b e

Simms
Conolly
Pa
Kierce
Plested
Wills
George
Body
Highpoint
Magolan
Desanctis
Ridley
Farren
Stevens
Fuller

Westlund

Al
Al
Al
Al
Al
Al
Al
Al
USs
Us
USs
Us
USs
Us
USs
Us

[

300
300
300
300
300
300
300
300
500
500
500
500
500
500
500
500

Zinin

if then do log

=] Log - (Untitled)
36 data bonus;

ar zet herc.=zales;

34 if country="U5" then do;
39 Bonus=500;

40 Freg="Once a Tear';
41 end ;

42

43 else if country="AU0" then do;
44 Bonus=300;

45 Freq="Twice a Tear';
46 end;

47 run;

HOTE: There were 165 obserwvations read from the data =set HERC.SALES.
MOTE: The data set HWOBK.BOHMUS haz 165 obszervations and 11 variables.
NOTE: DATA =statement used (Total process time):

real time 0.04 zeconds
cpu time 0.00 seconds
48
49 proc print data=bonus;
1] var First_Mame Laszt_Mame Country Bonus;
L | run;

MOTE: There were 165 obserwvationz read from the data set WORK .BOHWUS.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.04 =seconds

cpu time 0.03 seconds

Constraints of IF-THEN /DO

If we need to run many of these statements at once, writing out many DO groups is time consuming.

Ex: Want to find annual and quarterly compounded interest for 20 years (80 quarters), with 100 total
statements needed to compute this. Is there an easier way? (of course, or why would T ask, right?)

We can use a DO loop to take care of multiple DO statements.

General form of DO loops

DO index-variable = start TO stop <BY increments>;
Iterated SAS statements... ;

<QUTPUT>;

END;

start: specifies initial value of the index-variable

stop: specifies the ending value of the index-variable

increment: specifies a positive or a negative number to control the incrementing of the index-variable
<output>: an option to display all iterations of the index-variable

Executes statements between the DO and the END statements repetitively, based on the value of an
index-variable

Start and stop logistics

Start, stop and increment values: must be numbers or expressions that yield results, are established before
executing the loop and if omitted, the increment defaults to 1

- When increment is positive, start must be the lower bound and stop must be the upper bound

- When increment is negative, start must be the upper bound and stop must be the lower bound

Index-variable details
- The index-variable is written, by default, to the output dataset
- At the termination of the loop, the value of index-variable is one increment beyond the stop value

Basic do loop forward 1

data one;

do i=1 to 5;
end;

run;

proc print data=one;
run;

Basic do loop forward I print

The SAS System

Obs | i
1 6

Basic do loop forward I log

=] Log - (Untitled)

L data one;

L3 do i=1 to 5;
04 end;
L5 Fun

MOTE: The data set WOBK.OME has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):

real time 0.03 seconds
cpu time 0.01 seconds
LE
LT proc print data=one;
La Fun

HMOTE: There were 1 observations read from the data =set WORK .OMNE.
NOTE: PROCEDUBE PRINT used (Total process time):

real time 0.03 seconds

cpu time 0.01 =econds

Basic do loop forward II

data two;

do j=2 to 8 by 2;
end;

run;

proc print data=two;
run;

Basic do loop forward II print

The SAS System

Obs j
110

Basic do loop forward II log

-

=] Log - (Untitled)

L data two;

G0 do j=2 to 8 bw 2;
B1 end ;

62 run;

MOTE: The data set WORBK.TWO has 1 observations and 1 wvariables.
NOTE: DATA =tatement used (Total process time):

real time 0.01 zeconds
cpu time 0.00 zeconds
63
64 proc print data=tuo;
b5 Fun;

MOTE: There were 1 obzervationz read from the data =set WOREK.THO.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.03 =zeconds

cpu time 0.01 zeconds

Basic do loop backward

data three;

do k=10 to 2 by -2;
end;

run;

proc print data=three;
run;

Basic do loop backward print

The SAS System

Obs |k
10

10

Basic do loop backward log

o

2] Log - (Untitled)
67 do k=10 to 2 by -2;

(i1 end;
69 Fun ;

MOTE: The data set HWOBK.THREE ha=s 1 obserwvations and 1 wvariables.
NOTE: DATA statement uvsed [(Total process time):

real time 0.01 seconds

cpu time 0.00 seconds

7o
il proc print data=three;
ie Fun ;

MOTE: There were 1 obserwvations read from the data set HWORE.THREE.
NOTE: PROCEDURE PRINT wused ([(Total process time):

real time 0.01 seconds

cpu time 0.00 seconds

Writing loop for the Fibonacci sequence

First we need to identify the math equation we could use. So, the sequence starts at 1, then the second value
is the sum of the two previous values, which is again 1. The third value of the sequence is the sum of the first
two values (1+1=2), the fourth is the sum of the two preceding values (24-1=3), and so on.

There is a sum function and a lag function to use here. The sum function does exactly what it sounds like
(summing a variable or specified list of numbers). Lag is similar, it will retrieve the last value.

Use sum to calculate the next value of the sequence to sum the current position’s value and the previous
value (with lag).

Let 7; be the i*" value of the Fibonacci sequence.

r; of Fibonacci
T1 :177"2:177"3:277“423,...

The sequence would look like:
Tipl =T+ 11

The next value of the sequence (r;11) is the sum of the two preceding values (r; + r;—1).

Fibonacci loop

data fseq;

do i =1 to 10;
fib = sum(fib, lag(fib));
if i eq 1 then fib = 1;
output;
end;

run;

proc print data=fseq;

11

run;

Fibonacci loop print

The SAS System

Obs | i fib
1 1 1
2 2 1
3 3 2
4 4 3
5 5 5
6 6 8
i 7 13
8 B8 21
9 9 M

=1
=
—&
o]
(g}
(g}

12

Fibonacci loop log

T3 data fzeq:

74 do i =1 to 10}

75 fib = sum(fib, lag(fib));
76 if i eq 1 then fib = 1;
77 output ;

Ta end;

79 run;

HOTE: HMis=ing values were generated as a result of performing an operation on missing values.
Each place is given by: [(Number of times) at (Line):({Column]).
1 at 75:11
HOTE: The data set WORK.FSEQ has 10 obserwvations and 2 variables.
HOTE: DATA statement used (Total process time):
real time 0.03 =econds
cpu time 0.01 =econds

80 proc print data=fseq;
81 run ;

HOTE: There were 10 obserwvations read from the data set WORK.FSEQ.
HOTE: PROCEDURE PRINT used (Total process time):

real time 0.01 =econds

cpu time 0.00 =econds

Conditional iterative processing

You can use DO WHILE and DO UNTIL statements to stop the loop when a condition is met rather than
when the loop is executed a specific number of times. To avoid infinite loops, be sure that the specified
condition will be met.

Visualize loop process

The following diagram shows the logic and path the different loops take.

For loop I while loop I repeat loop I

!f -
%
-

DO WHILE statement

DO WHILE executes statements in a DO loop repetitively while a condition is true

13

General form of DO WHILE

DO WHILE (expression);
<additional SAS statements>;
END;

The value of expression is evaluated at the top of the loop and the statements in the loop never execute if
expression is initially false

do while

data dowhile;
do Year=1 to 30 while(Capital<=250000);
Capital+5000;
Capital+(Capital#*.045);
end;
run;

proc print data=dowhile noobs;
format Capital dollari4.2;
run;

do while print

The SAS System

Year Capital
28 | $264,966.67

14

do while log

-

=] Log - (Untitled)

a2 data dowhile;

83 do Year=1 to 30 while(Capital{=250000);
84 Capital+5000;

g5 Capital+(Capital*.045];

86 end ;

ar run;

HOTE: The data set WOBK.DOMHILE has 1 obserwvations and 2 wvariables.
MOTE: DATA statement used (Total process time):

real time 0.01 zeconds

cpu time 0.00 zeconds

a8

89 proc print data=dowhile noobs;
90 format Capital dollarid.2;
b N run;

HOTE: There were |1 observations read from the data set WORK.DOWHILE.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.07 =zeconds

cpu time 0.00 zeconds

DO UNTIL statement

DO UNTIL executes statements in a DO loop repetitively until a condition is true. Once the condition is
met, the loop is finished with its calculations

General form of DO UNTIL

DO UNTIL (expression);
<additional SAS statements>;
END;

The value of expression is evaluated at the bottom of the loop, the statements in the loop are executed at
least one time, and though the condition is placed at the top of the statement, it is evaluated at the bottom
of the loop

do until

data dountil;
do until(Capital>1000000) ;
Year+1;
Capital+5000;
Capital+(Capital*.045);
end;
run;

proc print data=dountil noobs;

format Capital dollaril4.2;
run;

15

do until print

The SAS System

Capital Year
$1,029.19317 h2

do until log

=] Log - (Untitled)
92 data dountil;

93 do vntil(Capital >1000000);
94 Year+1;

95 Capital +5000;

96 Capital+(Capital*.045);
a7 end ;

98 run;

HOTE: The data =et WORBK.DOUWTIL has 1 observationz and 2 wvariables.
NOTE: DATA statement used [Total process time):

real time 0.01 zeconds
cpu time 0.00 zeconds
99
100 proc print data=dountil noobs;
101 format Capital dollarlid.?;
102 run;

MOTE: There were 1 obserwvations read from the data set WORK.DOUWTIL.
NOTE: PROCEDURE PRINT vsed [(Total process time):

real time 0.01 zeconds

cpu time 0.00 zeconds

Nesting loops

Nested DO loops: are DO loops within DO loops

- Be sure to use different index variables for each loop

- Each DO statement must have its own corresponding END statement
- The inner loop executes completely for each iteration of the outer loop

General form of nested DO loops

DO index-variablel=start TO stop
<BY increment>;
<0UTPUT>;
DO index-variable2=start TO stop

16

<BY increment>;
<QUTPUT>;
END;

END;

The OUTPUT statement can be used (and will be in our Fibonacci loop) to make sure we get a value output
to the dataset for each iteration

nested do loop

data nested;
do Year=1 to 5;
Capital+5000;
do Quarter=1 to 4;
Capital+(Capital*(.045/4));
output;
end;
output;
end;
run;

proc print data=nested noobs;

format Capital dollaril4.2;
run;

17

nested do loop print

The SAS System

Year

1

[P I % A S R S T i T T % I L

Capital Quarter

$5,056.25
$5,113.13
$5,170.66
$5,228.83
$5,228 83
$10.343.50
$10.460.27
$10.577.95
$10.696.95
$10.696.95
$15.873.54
$16.052.12
$16,232.70

1

[TR = % R % |

[i T = S I % |

18

nested do loop log
2] Log - (Untitled)

103 data nested;
104 do Year=1 to 5;

105 Capital+5000;

106 do Quarter=1 to 4;

107 Capital+(Capital*(.045/4));
108 output ;

109 end;

110 output;

111 end ;

112 run;

MNOTE: The data =et WORK .HESTED has 25 obserwvations and 3 wvariables.
NOTE: DATA statement used [Total process time):

real time 0.01 =econdsz
cpu time 0.01 seconds
113
114 proc print data=nested noobs;
115 format Capital dollari4.2;
116 run;

HOTE: There were 25 observations read from the data set HOREK.MESTED.
NOTE: PROCEDUBE PRINT uwused [(Total process time):

real time 0.03 seconds
cpu time 0.00 seconds
Alt nested

Alternative method not showing the quarter variable

data nested(drop=Quarter);
do Year=1 to 5;
Capital+5000;
do Quarter=1 to 4;
Capital+(Capital*(.045/4));
end;
output;
end;
run;

proc print data=nested noobs;

format Capital dollaril4.2;
run;

19

Alt nested print

The SAS System

Year Capital
$5,228.83
2 510,696.95
3 $16,415.32
4
5

—

$22,395.39
52864915

Alt nested log

F

=] Log - (Untitled)

131 data nested(drop=0Quarter];
132 do Year=1 to 5;

133 Capital+5000;

134 do Quarter=1 to 4;

135 Capital+(Capital#*(.04574]1]);
136 end;

137 output ;

138 end ;

139 run;

HOTE: The data set WORK .WNESTED ha=s 5 ob=serwvations and 2 wariables.
NOTE: DATA statement used [(Total process time):

real time 0.01 seconds

cpu time 0.01 seconds

140

141 proc print data=nested noobs;
142 format Capital dollarid.?2;
143 run;

MOTE: There were 5 observations read from the data set WORK .HESTED.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.01 =econds

cpu time 0.00 seconds

20

	Interative data processing
	Using the IF family
	IF-THEN/ELSE I
	IF-THEN/ELSE I print
	IF-THEN/ELSE I log
	IF-THEN/ELSE II
	IF-THEN/ELSE II print
	IF-THEN/ELSE II log
	General form of IF-THEN/DO
	if then do
	if then do print
	if then do log
	Constraints of IF-THEN/DO
	General form of DO loops
	Start and stop logistics
	Basic do loop forward I
	Basic do loop forward I print
	Basic do loop forward I log
	Basic do loop forward II
	Basic do loop forward II print
	Basic do loop forward II log
	Basic do loop backward
	Basic do loop backward print
	Basic do loop backward log
	Writing loop for the Fibonacci sequence
	r_i of Fibonacci
	Fibonacci loop
	Fibonacci loop print
	Fibonacci loop log
	Conditional iterative processing
	Visualize loop process
	DO WHILE statement
	do while
	do while print
	do while log
	DO UNTIL statement
	do until
	do until print
	do until log
	Nesting loops
	General form of nested DO loops
	nested do loop
	nested do loop print
	nested do loop log
	Alt nested
	Alt nested print
	Alt nested log

