Matrix Arithmetic

Statistics 427: R Programming

Module 11

2020

Other ways to multiply vectors

If x and y are vectors (of numbers), then R defines the product of $\mathrm{x} * \mathrm{y}$ as the vector containing the elements of x each multiplied by the corresponding elements in vector y . This operation is called elementwise multiplication. Another kind of multiplication for vectors is called the dot product or scalar product that is useful in many applications in science and commerce.

Notation for vectors and matrices will be bold font \mathbf{C}. When doing these calculations by hand, the \mathbf{C} can be used for notation because trying to write a bold letter by hand does not work well. For lectures and this course, bold font \mathbf{C} will be used to denote vectors and matrices.

Example with the usual methods

Suppose a population of a small mammal species is represented by the vector $\mathbf{n}=\left(\mathbf{n}_{\mathbf{1}}, \mathbf{n}_{\mathbf{2}}, \mathbf{n}_{\mathbf{3}}, \mathbf{n}_{\mathbf{4}}\right)$, containing, respectively, the numbers of 0 -year-olds, 1 -year-olds, 2 -year-olds, and animals 3 years old or older. Suppose the vector $\mathbf{f}=\left(\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}, \mathbf{f}_{\mathbf{3}}, \mathbf{f}_{\mathbf{4}}\right)$ contains the average number of offspring born in the population per year to an average 0 -year-old, 1 -year-old, 2 -year-old, 3 -or-more-year-old, respectively. We will use bolded letters \mathbf{n} and \mathbf{f} to denote vectors in mathematical formulas. The average total number of offspring born in the population in a year is:

$$
\text { total offspring }=\sum n_{i} f_{i}=n_{1} f_{1}+n_{2} f_{2}+n_{3} f_{3}+n_{4} f_{4}
$$

Example in R

The following result is a single number or a scalar. The calculation represented by sum($\mathrm{n} * \mathrm{f}$) is the dot or scalar product of two vectors n and f of identical lengths.

```
n=c}(49,36,28,22
f=c(0,.2,2.3,3.8)
total.offspring=sum(n*f)
total.offspring
```

[1] 155.2

Dot product (scalar product)

In general if $\mathbf{x}=\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{k}}\right)$ and $\mathbf{y}=\left(\mathbf{y}_{\mathbf{1}}, \mathbf{y}_{\mathbf{2}}, \ldots, \mathbf{y}_{\mathbf{k}}\right)$ are vectors with equal length, the symbol for a dot product is a centered dot and the general definition of the dot product is the scalar number resulting from the following:

$$
\mathrm{x} \bullet \mathrm{y}=\mathrm{x}_{1} \mathrm{y}_{1}+\mathrm{x}_{2} \mathrm{y}_{\mathbf{2}}+\cdots+\mathrm{x}_{\mathrm{k}} \mathbf{y}_{\mathbf{k}}
$$

The operator in R for the dot product is $\% * \%$ (yes, with the percent symbols).

Example with dot product

$\mathrm{n} \%$ \% \%
[,1]
[1,] 155.2

Uses of dot product I

If a vector \mathbf{x} contains the number of different models of automobiles produced by a manufacturer and the vector \mathbf{y} contains the profit per automobile for each model, then $\mathrm{x} \bullet \mathrm{y}$ gives the total profit for all models produced.

Uses of dot product II

Or if \mathbf{a} is the vector of quantities that are recorded of a house and \mathbf{b} contains the average contribution to the value of the house by a unit of each quantity in \mathbf{a}, then $\mathbf{b} \bullet \mathbf{a}$ is the estimated sale (appraisal) value of the house.

Uses of dot product III

In geometry, if \mathbf{r} contains coordinates of a point in two dimensions, three dimensions, or any number of higher dimensions, and \mathbf{s} contains the coordinates of another such point in the same coordinate system, and θ is the angle between the two line segments drawn from the origin to the points represented by \mathbf{r} and \mathbf{s}, then

$$
\cos \theta=\frac{\mathbf{r} \bullet \mathbf{s}}{(\sqrt{\mathbf{r} \bullet \mathbf{r}})(\sqrt{\mathbf{s} \bullet \mathbf{s}})}
$$

Uses of dot product IV

$\cos (\mathrm{pi} / 4)$
[1] 0.7071068
$\mathrm{r}=\mathrm{c}(2,2)$ \# line segments from $(0,0)$ to r and to s
$\mathrm{s}=\mathrm{c}(2,0)$ \# form an angle pi/4 (45 deg)
$(r \% * \% s) /(s q r t(r \% * \% r) * s q r t(s \% * \% s))$
[,1]
[1,] 0.7071068

Uses of dot product \mathbf{V}

There is frequent occasion to perform and keep track of many dot products. For instance, let p_{1} be the average yearly survival probability for 0 -year-olds in the mammal population from earlier, and let p_{2}, p_{3}, and p_{4} be the respective annual survival probabilities of 1 -year-olds, 2 -year-olds, and animals 3 years old or older. Define the vectors $\mathbf{p}_{\mathbf{1}}=\left(\mathbf{p}_{\mathbf{1}}, \mathbf{0}, \mathbf{0}, \mathbf{0}\right), \mathbf{p}_{\mathbf{2}}=\left(\mathbf{0}, \mathbf{p}_{\mathbf{2}}, \mathbf{0}, \mathbf{0}\right)$, and $\mathbf{p}_{\mathbf{3}}=\left(\mathbf{0}, \mathbf{0}, \mathbf{p}_{\mathbf{3}}, \mathbf{p}_{\mathbf{4}}\right)$. Then after a year has passed, $\mathbf{p}_{\mathbf{1}} \bullet \mathbf{n}\left(=p_{1} n_{1}\right)$ is the number of 1 -year-olds, $\mathbf{p}_{\mathbf{2}} \bullet \mathbf{n}$ is the number of 2 -year-olds, and $\mathbf{p}_{\mathbf{3}} \bullet \mathbf{n}$ is the number of
animals 3 years or older. Use all of that with the original calculations we did and the four dot products for projecting the population in 1 year become the components for an operation called matrix multiplication.

Matrix Multiplication

A matrix is a rectangular array of numbers. Matrices are simple but some matrix operations are a bit unintuitive at first. In a way, matrix multiplication is a way to keep track of many dot products of vectors. We can make matrices from vectors with a few different methods. First up is rbind() and cbind() to bind vectors together in a matrix either by rows or columns, respectively.

General forms of rbind() and cbind()

rbind(...,) and cbind (...,)
....: generalized vectors or matrices with arguments separated by commas

```
rbind() and cbind() example
```

```
x1=c(3:6)
x2=c(10:13)
x3=c(-1:-4)
a=rbind(x1,x2,x3); a
\begin{tabular}{lrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
x 1 & 3 & 4 & 5 & 6 \\
x 2 & 10 & 11 & 12 & 13 \\
x 3 & -1 & -2 & -3 & -4
\end{tabular}
b=cbind(x1,x2,x3); b
x1 x2 x3
[1,] 3 10-1
[2,] 4 11 -2
[3,] 5 12 -3
[4,] 6 13-4
```


Matrices I

The matrix a defined in the previous R example has three rows and four columns (therefore \mathbf{a} is a 3×4 matrix), whereas the matrix \mathbf{b} is a 4×2 matrix. the rows of \mathbf{a} and the columns of \mathbf{b} were labeled with the original vector names. However, matrix elements are actually referenced by their row and column numbers. With R, the elements can be selected out of a matrix using their row and column numbers using the index method (square brackets [r,c]).

Index method review I

```
a[2,3]
x2
12
b [4,3]
x3
-4
```

```
a[2,3]+b[4,3]
x2
    8
```


Index method review II

$a[1,2: 4]$
[1] 456
b[c(1,3), 1:3]
x1 x2 x3
[1,] $310-1$
$[2] \quad 5 \quad 12-$,
a [2,]
[1] $\begin{array}{lllll}10 & 11 & 12 & 13\end{array}$

Matrices II

In R, a matrix differs from a data frame in that a matrix can only contain numerical elements, while a data frame can have categorical or numerical data.

The matrix product $\mathbf{A B}$ of a matrix $\mathbf{A}(\mathbf{l} \times \mathbf{m})$ and a matrix $\mathbf{B}(\mathbf{m} \times \mathbf{n})$ is defined if the number of the columns of \mathbf{A} equals the number of rows of \mathbf{B}. Think of \mathbf{A} as a "stack" of vectors, each with m elements, in the form of rows:

$$
\mathbf{A}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

Matrices III

Think of the second matrix in the product as a line of vectors each with m elements in the form of columns:

$$
\mathbf{B}=\left[\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right]
$$

Matrices IV

The matrix AB is a matrix with l rows and n columns, consisting of all the pairwise dot products of the vectors of \mathbf{A} and \mathbf{B}. In other ways, the element in the i th row and the j th column of $\mathbf{A B}$ is the dot product of the i th row of \mathbf{A} and the j th column of \mathbf{B}.

$$
\mathbf{A B}=\left[\begin{array}{cccc}
a_{1} \bullet b_{1} & a_{1} \bullet b_{2} & \cdots & a_{1} \bullet b_{n} \\
a_{2} \bullet b_{1} & a_{2} \bullet b_{2} & \cdots & a_{2} \bullet b_{n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{l} \bullet b_{1} & a_{l} \bullet b_{2} & \cdots & a_{l} \bullet b_{n}
\end{array}\right]
$$

Matrices V

In general, with matrix algebra, the commutative property does not hold. That is $\mathbf{A B} \neq \mathbf{B A}$. The product $\mathbf{B A}$ could be a different-sized matrix or could be undefined if the rows of \mathbf{B} and columns of \mathbf{A} do not match.

Matrices VI

R handles matrix calculations well (of course it does!)

	*\% ${ }_{\text {b }}$		
	x1	x2	x3
x 1	86	212	-50
x2	212	534	-120
x3	-50	-120	30
	*\% ${ }^{\text {a }}$; d	

[,1] [,2] [,3] [,4]

[1,] 110	124	138	152

$[2] \quad 124 \quad 141 \quad 158 \quad$,
[3,] 138158178198

$[4]$,	152	175	198	221

Matrices VII

When discussing a matrix product $\mathbf{A B}$, saying that \mathbf{A} is "postmultiplied" by \mathbf{B} and that \mathbf{B} is "premultiplied" by \mathbf{A} helps to avoid confusion.

The associative property does hold in matrix multiplication.

$$
\mathbf{A B C}=(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})
$$

Additionally, when a matrix only has one row or one column, it is called, respectively, a row vector or a column vector

Matrices VIII

Scalar multiplication of a matrix is defined as a matrix, A, multiplied by a scalar number, say x; the operation is denoted as $\mathbf{A x}$ or $x \mathbf{A}$ and results in a matrix containing all the elements of \mathbf{A}, each individually multiplied by x. In R, this is done with the plain multiplication operation * (no $\%$ signs). Scalar multiplication is commutative.

Matrices IX

$\mathrm{x}=2$				
$\mathrm{x} * \mathrm{a}$				
	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
x 1	6	8	10	12
x 2	20	22	24	26
x 3	-2	-4	-6	-8

Matrix addition and subtraction

Unlike matrix multiplication, matrix addition is defined elementwise, as we intuitively suppose it should be. In matrix addition, each element is defined for only two matrices with the same dimensions (same number of rows and columns). Matrix subtraction is similar to matrix addition, subtracting elements of one matrix from the corresponding elements in another matrix. The usual plus + and minus - signs in R work here.

Addition and subtraction example I

```
k=1:10
a=matrix(k,2,5); a
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	1	3	5	7	9
$[2]$,	2	4	6	8	10
$j=c(1,2)$					
$b=\operatorname{matrix}(j, 2,5) ;$	b				

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	1	1	1	1	1
$[2]$,	2	2	2	2	2

Addition and subtraction example II

$a+b$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	2	4	6	8	10
$[2]$,	4	6	8	10	12

a-b

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	0	2	4	6	8
$[2]$,	0	2	4	6	8

Reading a data file into a matrix

A file of data can be read into a matrix with the matrix() function. Suppose I have a file called C: /Docs/mydata.txt on my computer. If the file has only numeric data, the following statement would read the data into a matrix:

```
x=matrix(scan('C:/Docs/mydata.txt'),nrow=6,ncol=8,
byrow=T)
matrix(x,r,c,byrow=F)
x: object (data frame or vector)
r, c: number of rows and columns, respectively
byrow=F: F (default) means matrix is filled by columns, otherwise (T) by rows
scan(file='',...)
file: name of file to read data values from
. ..: more options
```


Wildlife population example I

There are three age classes of animals in a population: juveniles ($<1 \mathrm{yr}$), subadults (nonbreeding animals $1-2 \mathrm{yrs}$), and breeding adults ($\geq 2 \mathrm{yrs}$). The number of juveniles, subadults, and adults in the population at time t were denoted, respectively, as J_{t}, S_{t}, A_{t}. These age classes were projected one time unit (year) into the future with three equations:

$$
\begin{gathered}
J_{t+1}=f A_{t} \\
S_{t+1}=p_{1} J_{t} \\
A_{t+1}=p_{2} S_{t}+p_{3} A_{t}
\end{gathered}
$$

Wildlife population example II

The values p_{1}, p_{2}, and p_{3} are the annual survival probabilities for individuals in the three age classes, and f is the average annual number of offspring produced by each adult (fecundity). Rewritten as dot products is
$J_{t+1}=0 J_{t}+0 S_{t}+f A_{t}$, which is the dot product of $(0,0, f)$ and $\left(J_{t}, S_{t}, A_{t}\right)$
$S_{t+1}=p_{1} J_{t}+0 S_{t}+0 A_{t}$, which is the dot product of $\left(p_{1}, 0,0\right)$ and $\left(J_{t}, S_{t}, A_{t}\right)$
$A_{t+1}=0 J_{t}+p_{2} S_{t}+p_{3} A_{t}$, which is the dot product of $\left(0, p_{2}, p_{3}\right)$ and $\left(J_{t}, S_{t}, A_{t}\right)$

Wildlife population example III

Enter into matrices (well, one vector and one matrix. . . but... semantics)

$$
\begin{gathered}
\mathbf{n}_{\mathbf{t}}=\left[\begin{array}{c}
J_{t} \\
S_{t} \\
A_{t}
\end{array}\right] \\
\mathbf{M}=\left[\begin{array}{ccc}
0 & 0 & f \\
p_{1} & 0 & 0 \\
0 & p_{2} & p_{3}
\end{array}\right]
\end{gathered}
$$

The column vector $\mathbf{n}_{\mathbf{t + 1}}$ of next year's age classes is found by matrix multiplication.

$$
\mathbf{n}_{\mathbf{t}+\mathbf{1}}=\mathbf{M} \mathbf{n}_{\mathbf{t}}
$$

Wildlife population example IV

The Northern Spotted Owls have age class survival probabilities as follows: $p_{1}=0.11, p_{2}=0.71$, and $p_{3}=0.94$. Fecundity (average annual number of offspring produced by each adult), $f=0.24$.
Entering the data into R, rbind() will be used to bind the vectors together by rows to create the matrix. Additionally, n .time and n . ages will be created as well; n . time $=20$ years and n . ages $=3$ for the three age classes.

```
p1=.11; p2=.71; p3=.94; f=. 24
n.time=20; n.ages=3
M=rbind(c(0,0,f),c(p1,0,0),c(0,p2,p3))
N=matrix(0,n.time,n.ages)
```


Wildlife population example V

The initial starting values of the population age classes are the first row of \mathbf{N}. Next is a loop to calculate for all twenty years.

```
N[1,]=c(1200, 800, 2000)
for(t in 1:(n.time-1)){
    N[t+1,]=M%*%N[t,]
}
N
```

 [,1] [,2] [,3]
 [1,] 1200.0000800 .000002000 .000
 [2,] 480.0000132 .000002448 .000
 [3,] \(587.5200 \quad 52.800002394 .840\)
 [4,] \(574.7616 \quad 64.627202288 .638\)
 [5,] \(549.2730 \quad 63.22378 \quad 2197.205\)
 [6,] \(527.3291 \quad 60.420032110 .261\)
 \([7] \quad 506.4627 \quad 58.00620 \quad\),
 [8,] \(486.3705 \quad 55.71090 \quad 1946.136\)
 [9,] \(467.0725 \quad 53.50076 \quad 1868.922\)
 [10,] $448.5413 \quad 51.37798 \quad 1794.772$
[11,] $430.7454 \quad 49.33955 \quad 1723.564$
[12,] 413.655547 .381991655 .182
[13,] 397.243645 .502101589 .512
[14,] $381.4829 \quad 43.696791526 .448$
[15,] $366.3475 \quad 41.963121465 .886$
[16,] $351.8125 \quad 40.29822 \quad 1407.726$
[17,] $337.8543 \quad 38.69938 \quad 1351.874$
$\begin{array}{lllll}{[18,]} & 324.4499 & 37.16397 & 1298.239\end{array}$
$\begin{array}{lllll}{[19,]} & 311.5772 & 35.68948 & 1246.731\end{array}$
$\begin{array}{lllll}{[20,]} & 299.2153 & 34.27350 & 1197.266\end{array}$

Wildlife population example VI

```
time.t=0:(n.time-1)
matplot(time.t,N,type='l',lty=c(2,5,1),ylim=c (0, 2600))
```


The Matrix
Red or blue?

