Probability and Simulation
Statistics 427: R Programming

Module 14

2020

Random variables

In the baseball simulation done in Module 7, the proportion of successes out of 30 attempts was recorded.
When the process was repeated, it was typical for a new proportion to occur. The proportion of successes is
a quantity that will vary during repeated sampling.

Quantities that vary at random are called random variables; they are akin to a mathematical function, and
many process generate random variables. Think of capture-and-release methods to study birds and measure
their beak length, every different bird measured will vary to some degree.

Random variables

In science random variable are important because they are typically counts or measurement produced by
some process by which scientific data are generated. Science is full of quantities that vary: amount of daily
rainfall at a weather station, household income among households in a city, growth yields of wheat under
certain conditions, distances of galaxies from Earth, the number of craters in 100-km? areas on Venus, and
the list can go on. Think about a process and most of the time they could be considered random variables.

Probability

What can possibly be learned from processes that have varying levels of outcomes? Look for variability in
the patterns of the outcomes.

The study of ways to make reliable conclusions from outcomes of random variables is the branch of science
called statistics. The main driving force of statistics is in building and testing mathematical models of how
the outcomes arise, and for use as hypotheses about our understanding of the processes involved. The study
of patterns and randomness is a branch of mathematics called probability.

Probability

Law of Large Numbers (LLN): if a random process could be repeated many, many, many, many times,
the long-run proportion of successes will stabilize and get closer and closer to the theoretical probability. For
a small number of repetitions, considerable variation can be expected to happen.

and the next day...and the next day...and the next day...

LLN

Building a function to generate a sequence of successes and failures. The function will return with a vector of
0s and 1s (O=failure, 1=success) based on input of a sample size and probability of success. The idea is to
use the function to simulate samples of size 5, then size 6, size 7, and so on until maybe 500. For each block,
the mean is calculated and look at the variability in the means decreasing.


https://www.youtube.com/watch?v=yHIX7O8wQNQ

Simulation of LLN

outcomes=function(n,p){
u=runif (n)
x=1*(u<=p) # easier way to convert logical (T/F) to numeric (0,1)
return(x)

}

# test it out

outcomes (10, .8)

[1] 1101101111

Simulation of LLN

p=0.26; max.n=500 # p(1) and max sample size
n=5:max.n # n increasing from sample size 5 to 500
phat=numeric(length(n))
for(i in 1:length(n)){

phat [i]=mean(outcomes(n[i],p))

}

Simulation of LLN plot

plot(n,phat,type='1l"',xlab="'Count of Trials',ylab='Proportion of successes')

abline (h=p,lty=2)
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LLN

You can see in the graph, as we take more and more samples, the variation is reducing and the probability
will converge to a single number (the theoretical probability).

In practice, an event probability might never actually be known but rather estimated from many trials.

Probability distribution of counts

Rather than an average now, keep track of the number of successes. Simulate samples of size 30 for 10,000
iterations.

n=30; p=0.26; max.n=10000 # p(1) and maz sample size
s=numeric(max.n)
for(i in 1:max.n){
s[i]=sum(outcomes(n,p))
}
hist(s)

Histogram of s
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Probability distribution of counts

The collection of the possible outcomes (0,1, ..., 30) of the random variable (successes out of n trials) along
with the probabilities of the outcomes is called the probability distribution of a sample.

Binomial distribution

Basically what was just simulated (the sum of the outcomes) is a type of probability distribution called the
binomial distribution. A random process that produces a binomial distribution has the following properties
(1) There are a fixed number of trials n, with only two possible outcomes (success (S) or failure (F)) (2) For



each trial, the probability of success p is the same (3) Trials are independent of each other (the outcome
on any one trial has no effect on the outcome of any other trial) (4) The random variable is the count of y
successes from n trials.

Binomial distribution function

The probability of y successes from n trials is

n!
yl(n —y)!

The mean (E(Y)), variance (V(Y)), and standard deviation (SD(Y)):

EW)=nmp V(V)=mp(l—p)  SD(Y)=/V(¥)
R functions for binomial distribution
dbinom(x,n,p,...)= P =y) or P(X =x)
pbinom(x,n,p,...)= P(Y <y) (less than or equal to argument; a range)
x: vector of quantiles (argument)
n: sample size
p: probability of success
: other options

P(Y >y)=1-binom(y) and P(Y >y)=1—-P(Y <y)
Binomial example I
p=.26; n=30
y=0:30
py=dbinom(y,n,p); py

[1] 1.193855e-04 1.258388e-03 6.410975e-03 2.102338e-02 4.985950e-02

[6] 9.109465e-02 1.333593e-01 1.606490e-01 1.622772e-01 1.393732e-01
[11] 1.028348e-01 6.569302e-02 3.654544e-02 1.777886e-02 7.585191e-03
[16] 2.842738e-03 9.363749e-04 2.709384e-04 6.875163e-05 1.525641e-05
[21] 2.948198e-06 4.932634e-07 7.089904e-08 8.664513e-09 8.879174e-10
[26] 7.487304e-11 5.058989e-12 2.633308e-13 9.913030e-15 2.402039¢-16
[31] 2.813199e-18
data.frame(y,py)

y py

1 0 1.193855e-04
2 1 1.258388e-03
3 2 6.410975e-03
4 3 2.102338e-02
5 4 4.985950e-02
6 5 9.109465e-02
7 6 1.333593e-01
8 7 1.606490e-01
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.622772e-01
.393732e-01
.028348e-01
.569302e-02
.654544e-02
.777886e-02
.585191e-03
.842738e-03
.363749e-04
.709384e-04
.875163e-05
.525641e-05
.948198e-06
.932634e-07
.089904e-08
.664513e-09
.879174e-10
.487304e-11
.0568989e-12
.633308e-13
.913030e-15
.402039%e-16
.813199e-18

Binomial example II

pbinom(y,n,p)

(1]

(6]
[11]
[16]
[21]
[26]
[31]

= =2 OO OO O

.0001193855
.1697662787
.8682598999
.9987051567
.9999994262
.0000000000
.0000000000

= O O O O O

.0013777732
.3031255671
.9339529216
.9996415316
.9999999195
.0000000000

Binomial example II1

= O O O O O

.0077887486
.4637745942
.9704983638
.9999124700
.9999999904
.0000000000

= O O O O O

.0288121271
.6260518208
.9882772275
.9999812216
.9999999990
.0000000000

= O O O O O

.0786716262
. 7654250545
.9958624185
.9999964780
.9999999999
.0000000000

rbinom(20,n,p) # generates 20 random wvalues from binom with n=30,p=.26

(1]

5 6 6 9 6 6 412 7 6 910 8 7 6 11 11 10 9 12

Binomial example IV

py=dbinom(y,n,p)
plot(y,py,type='h"')
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Probability distributions of measurements

Life is discrete; every measurement device we have is limited to a certain degree of accuracy, like to the
second decimal place. The set of measurements that can be output by the device is a discrete set, meaning
we can count the members of the set. Even the set of numbers that can be stored in the floating point system
on a computer is a discrete set (granted, it is a large set).

Discrete vs. continuous

Members of the set of real numbers in a interval, say between 0 and 1, cannot be “counted” like the members
of a discrete set. Real numbers are a mathematical abstraction beyond our everyday experience; there are
numerous circumstances in science in which modeling the numerical output of some phenomenon as a set of
real numbers offers great calculation convenience at little expense of realism.

In probability, if the range of output of a random process is “fine-grained” with many possible values, we
can often achieve great simplification by using a continuous probability distribution to model the process. A
random variable with a continuous probability distribution takes a real values within a range (interval) of
possible values.

Uniform distribution

When a random variable has a continuous probability distribution, we assign probabilities to intervals instead
of individual numbers. In earlier modules, we have used the uniform distribution. The random variable U
takes a real value between 0 and 1 (in computers U takes on a value from any of the possible 16-decimal
place numbers between 0 and 1). The probability that U takes on a value between a and b is b — a where
0<a<b<l1,thatis

Pla<U<b)=b—-a



runif ()

runif (n) where n is the desired number of randomly sampled values. This function will allow a convenient
way to do many kinds of probability simulations and randomizations, as used in previous modules with
random generators.

Normal distribution

For probabilities for area to the left, use pnorm(); for area to the right use 1-pnorm(); for area between two
values (a<b) use pnorm(b)-pnorm(a).

P(Y = y) = dne because Y is continuous

pnorm(x,mean=0,sd=1,...)

x: (y) argument; quantity or vector of quantities

mean: (mu) default is 0

sd: (sigma) default is 1 (with mean=0 gives standard normal => Z, asin Z ~ N(u = 0,0 = 1))

Y ~ N(p,0)

With z = £=£

o

Normal example

# Y~N(500, 100)

mu=500; sd=100
pnorm(600,mu,sd) # P(Y<600)

[1] 0.8413447
1-pnorm(600,mu,sd) # P(Y>600)

[1] 0.1586553
pnorm(700,mu,sd) -pnorm(400,mu,sd) # P(400<Y<700)

[1] 0.8185946

Central Limit Theorem (CLT) redux

A simulation for the CLT for the sampling distribution of the sample mean using the normal distribution was
shown in Module 6. Using other distributions was hinted at for the example, and here are examples of CLT
with the exponential and binomial distributions.

CLT exponential

x=rexp (500)
hist (x,prob=TRUE)
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CLT exponential

x=rexp(500) ;
hist (x,prob=TRUE)
curve (dexp(x) ,add=TRUE, lwd=2,col="red")
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CLT exponential
mean (x)

[1] 1.007934

x=rexp(500)
mean (x)

[1] 1.009407

CLT exponential

mu=1; sigma=1; n=30
xbar=rep(0,500)

for (i in 1:500)

{ xbar[i]l=mean(rexp(n)) }

hist (xbar,prob=TRUE,breaks=12)
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CLT binomial
# start with n=10, p=.8, 500 <terations

y=rbinom (500,10, .8)
hist(y,prob=T)
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Density

CLT binomial

y=rbinom (500,10, .8)
hist(y,prob=T)

0.1 0.2 0.3 04 05

0.0

Histogram of y

11

10



Histogram of y
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CLT binomial

mean (y)

[1] 8.108

y=rbinom (500,10, .8)
mean (y)

[1] 7.978

CLT binomial

mu=8; sigma=1.26; n=10
xbar=rep(0,500)

for (i in 1:500)

{ xbar[i]=mean(rbinom(n,10,.8)) }
hist (xbar,prob=TRUE,breaks=15)

12
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