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Introduction
Statistical Inference: using information obtained from a proper sample to make an educated judgment about
a population

Three types of inference

(1) point estimation
(2) interval estimation (aka confidence intervals (CIs))
(3) statistical tests (aka hypothesis tests)

Terms I
Point Estimation: a point estimate of a parameter (let’s just say a generic parameter is called θ and its
estimate (statistic) is called θ̂). θ̂ is a single number that can be regarded as a sensible value for θ. It is
obtained by selecting a suitable statistic and computing its value from the given sample data. The selected
statistic is called the point estimate of θ. Examples are: X estimates µ, π̂ estimates π, s estimates σ, and
so on.

A point estimate is just a single number and by itself provides no information about the precision and
reliability of estimation; it gives no feedback on how close our estimate was to the parameter.

Terms II
Interval estimation: an alternative to reporting a sensible value for the parameter being estimated is
to calculate an entire interval of plausible values, called interval estimation, specifically we call them
confidence intervals (CIs).

Select the level of confidence, it is usually 95% but others are also used often (90%, 98%, 99%). A CI with
level 95% implies that 95% of samples would give an interval that contains θ, or that only 5% of samples
would not contain θ.

Assumptions
Assumptions: conditions that we need to be true in order for the data to properly fit the model we are using
for estimations (1) Independence: observations are independent from one another (2) Randomization: proper
randomization was used (takes care of independence issue if there is one) (3) Means need an approximate
normal distribution (if n ≥ 30, then it is approximately normal), and proportions need to meet the S/F
condition: np ≥ 5 and nq ≥ 5 (if n ≥ 60, S/F condition is met)

If assumptions are violated, the results from the analyses are not as valid nor reliable
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General Form
All CIs (even more complex ones) have the same form:

point estimate± bound

Where the bound on the error of estimation is z?(se) or t?(se) and semean = σ√
n
, seπ =

√
π̂(1− π)/n, or

semean = s√
n
(the one you use depends on the situation; explanations to come)

CI forms
CI on µ when σ is known

ȳ ± z?
(
σ√
n

)
CI on µ when σ is unknown

ȳ ± t?
(

s√
n

)
CI on π

π̂ ± z?
√
π̂(1− π̂)

n

Hypothesis tests
We have learned about estimating parameters by point estimation and interval estimation (specifically
confidence intervals). More often than not, the objective of an investigation is not to estimate a parameter
but to decide which of two (or more) contradictory claims about the parameter is correct.

This part of statistics is called hypothesis testing

Terms
Statistical hypotheses is a claim or assertion about

(1) The value of a single parameter
(2) The values of several parameters
(3) The form of an entire probability distribution

Hypotheses

(1) Null hypothesis, denoted by H0, is the claim that is initially assumed to be true (the “prior belief” or
“historical” claim)

(2) Alternative hypothesis, denoted by Ha, is the assertion that is contradictory to H0; it is a researcher’s
claim, what they are trying to prove (thus the reason behind the study)

Hypothesis Testing Checklist
All tests include the following four steps:

(1) State hypotheses, check assumptions
(2) Calculate the test statistic
(3) Find the rejection region
(4) Results and conclusion of the test
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Hypotheses
When stating the hypotheses, the notation used is always population parameter notation; inferences upon
populations need population notation (the Greek letters)

µ for the mean and π for the proportion

Hypotheses for µ
Hypotheses for inferences concerning means (regardless of whether or not σ is known

H0 : µ = µ0 vs. Ha : µ 6= µ0

H0 : µ ≥ µ0 vs. Ha : µ < µ0

H0 : µ ≤ µ0 vs. Ha : µ > µ0

Most often the null hypothesis will have = while the alternative will be one of either 6=, >, or <. µ0 is a
specified value (a number that is given in the problem)

Hypotheses for π
Hypotheses for inferences concerning proportions:

H0 : π = π0 vs. Ha : π 6= π0

H0 : π ≥ π0 vs. Ha : π < π0

H0 : π ≤ π0 vs. Ha : π > π0

Most often the null hypothesis will have = while the alternative will be one of either 6=, >, or <. π0 is a
specified value (a number that is given in the problem)

Assumptions
(1) Independence: observations are independent from one another
(2) Randomization: proper randomization was used

• Takes care of independence issue if there is one
(3) Normality

(a) Means need an approximate normal distribution (n ≥ 30 should take care of it)
(b) Proportions need n ≥ 60 (via CLT)

If assumptions are violated, the results from the analyses are not valid nor reliable

Test Statistic
1-sample test of the mean µ when σ is known: Use Z

z = y − µ0

semean
; semean = σ√

n

1-sample test of the proportion p (most often a χ2 test is done in practice): Use Z

z = π̂ − π0

seπ
; seπ =

√
π0(1− π0)

n

1-sample test of the mean µ when σ is unknown: Use t

t = y − µ0

semean
; semean = s√

n
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Rejection Region
Is based on significance level α. α = 1− CL where CL is the confidence level

Always assume α = 0.05 unless specified otherwise)

Two methods for rejection:

(1) Critical value approach (not used in this course, only for review)
(2) pvalue approach (will be used in this course, including a review)

The alternative hypothesis (Ha) determines rejection based on where you are at on the curve

Critical Value Approach Ha :<
Reject H0 iff (if and only if) zcalc ≤ zα (zcalc will most likely be a negative value and zα must be negative)

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
z

D
en

si
ty criteria

retain

reject

Critical Value Approach Ha :>
Reject H0 iff zcalc ≥ zα (zcalc will most likely be a positive value and zα must be positive)
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Critical Value Approach Ha : 6=
Reject H0 iff |zcalc| ≥ |zα/2| (zcalc and zα can both be either positive or negative, but we will deal with
absolute values)

(white area is the rejection region, and yes there are two area here that are both the rejection region)
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Results and Conclusion
• Results: we either

– Reject H0 (rejecting the null hypothesis in favor of the alternative)
– Fail to reject H0 (we are not rejecting the null hypothesis so that means that the null hypothesis

gives a reasonable explanation of the question at hand) Conclusion: explain what the results did
in relation to the actual data

pvalue logistics I
The pvalue of a test is the probability that, given the null hypothesis (H0) is true, the results from another
random sample will be as or more extreme as the results we observed from our sample.

The pvalue of the test is dependent on the type of test you are doing, as in one-tail upper, one-tail lower, or
two-tail. The sign of the alternative hypothesis is the determining factor in calculation of the pvalue.

pvalue logistics II
The pvalue approach; the null hypothesis can be rejected iff (if and only if) pvalue ≤ α (with α = 0.05 most
often). This does not change, regardless of the sign of the alternative hypothesis. However, the calculation of
the pvalue is dependent on the sign of the alternative hypothesis. The pvalue will be the P ( the results of
the test |H0 is correct), in other words, it is the probability that the results would occur by random chance if
the null hypothesis is actually correct.

Assume that α = 0.05 unless specified; any rejection of H0 means that the results (of experiment, survey,
etc.) are significant.

pvalue ≤ α⇒ Reject H0
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Ha : > upper tail test
Note that while all examples are with z, it is interchangeable with t (df is needed)

In this case, pvalue represents the rejection region in the right tail of the distribution.

pvalue = P (Z ≥ zcalc) = 1− P (Z ≤ zcalc)
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Ha : < lower tail test
pvalue = P (Z ≤ zcalc)
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Ha : 6= two tail test
pvalue = 2[P (Z ≤ zcalc)] or 2[1− P (Z ≤ zcalc)]

= 2[1− P (Z ≤ |zcalc|)]
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pvalue rejection Examples
(1) pvalue = 0.4 with α = 0.05. Since pvalue = 0.4 � α(0.05), H0 is not rejected (fail to reject H0).

There is a 40% chance that we would see these results due to random chance (dumb luck) if the null
hypothesis is correct; results are not significant.

(2) pvalue = 0.04 with α = 0.05. Since pvalue = 0.04 ≤ α(0.05), H0 is rejected. There is a 4% chance that
we would see these results due to random chance (dumb luck) if the null hypothesis is correct; results
are significant.

(3) pvalue = 0.04 with α = 0.01. Since pvalue = 0.04 � α(0.01), H0 is not rejected. There is a 4% chance
that we would see these results due to random chance (dumb luck) if the null hypothesis is correct;
results are not significant.

CIs and tests in R

The point of this course is to learn R so we will use it for our tests and CIs. The previous slides are for review
purposes only and the following will be how we get these done with R.

In reality, z tests are not used often, and almost never with CIs and tests for one or more parameters. In all
examples, we will only be using t-tests.

Tests and CIs for one-sample
t.test() will give results for hypothesis tests and for CIs.

t.test(x,y,mu=,alternative=,conf.level=,...)
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x and y: either 1 vector (x), 2 vectors of quantitative data, or a formula y~x with y numeric and x character
mu: mu=0 is default; mu is hypothesized value (µ0)
alternative=: 'two.sided' (default), 'l' (lowercase L) or 'less', 'g' or 'greater'
conf.level=: 0.95 is default; CL = 1− α
...: other options

A “normal” CI is equivalent to a 2-tailed test. The CIs produced with either a lower- or upper-tail test,
respectively, will have intervals that look like (−∞, upper) or (lower,∞)

t.test() Ha : 6=

x=iris$Petal.Length
# test H0: mu=3.5 Ha: mu not= 3.5
t.test(x,mu=3.5)

One Sample t-test

data: x
t = 1.79, df = 149, p-value = 0.07549
alternative hypothesis: true mean is not equal to 3.5
95 percent confidence interval:
3.473185 4.042815

sample estimates:
mean of x

3.758

t.test() Ha : >

# test H0: mu=3.5 Ha: mu > 3.5 with alpha=10%
t.test(x,mu=3.5,alternative='g',conf.level=.9)

One Sample t-test

data: x
t = 1.79, df = 149, p-value = 0.03774
alternative hypothesis: true mean is greater than 3.5
90 percent confidence interval:
3.57246 Inf

sample estimates:
mean of x

3.758

t.test() Ha : <

# test H0: mu=3.5 Ha: mu < 3.5 with alpha=1%
t.test(x,mu=3.5,alternative='l',conf.level=.99)

One Sample t-test
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data: x
t = 1.79, df = 149, p-value = 0.9623
alternative hypothesis: true mean is less than 3.5
99 percent confidence interval:

-Inf 4.096955
sample estimates:
mean of x

3.758

Comparing two groups
Comparisons:

(1) Two independent means
(a) When σ2

1 ≈ σ2
2 : Pooled

(b) When σ2
1 6= σ2

2 : Unpooled (also called a Welch test in R)
(2) Dependent means (mean difference)
(3) Two independent proportions (again, a χ2 test is done in practice)

Independent means
This compares the means of two distinct (separate) groups of units or subjects. The wording used is the
difference of two (independent) means

There are two cases for this (when variances are equal or unequal).

pooled: for when variances are equal (σ2
1 ≈ σ2

2)
unpooled: for when variances are unequal (σ2

1 6= σ2
2)

The concept of pooled vs. unpooled refers to the standard error and degrees of freedom for the differences of
two independent means (the se)

Figuring out if σ2
1 ≈ σ2

2 or σ2
1 6= σ2

2

In order to determine if the variances are equal or not, a variance test needs to be performed first. The
“answer” to the test will indicate which method, pooled or unpooled, is most appropriate for the data.

Variance test hypotheses
The hypotheses for this test are (always)

H0 : σ2
1 = σ2

2 vs. Ha : σ2
1 6= σ2

2

A variation on that is to use a ratio of the variances. Divide both sides of the hypotheses equations by σ2
2 . If

the two variances are equal (approximately), then the ratio should be close to one, if they are unequal, their
ratio will be greater than 1.

H0 : σ
2
MAX

σ2
MIN

= 1 vs. Ha : σ
2
MAX

σ2
MIN

> 1
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Test statistic and pvalue for variance test
The test statistic is an F statistic, commonly used for analysis of variance (ANOV A). The F statistic for
the variance test is

F = s2
1
s2

2

Then a pvalue is calculated as P (F > Fcalc). The reason is it a right tail test is that you can never calculate
a negative F statistic because variances can never be negative. Additionally, the F distribution is not a
symmetric distribution, but a right skewed distribution.

Variance test pvalue and conclusions
Once you have the pvalue

Reject H0 iff pvalue ≤ α

The significance level α is always assumed to be α = 0.05 unless specified otherwise.

If H0 is rejected, the variances are not equal and the unpooled (Welch) method is most appropriate for the
data

If H0 is not rejected, the variances are equal (approximately, they do not have to be exactly equal) and the
pooled method is most appropriate for the data

Pooled method se and df

Degrees of freedom for independent means for pooled method, when variances are equal is

df = n1 + n2 − 2

And the standard error for the pooled method is

se =

√
s2
p

(
1
n1

+ 1
n2

)
s2
p is called the pooled variance, calculated by

s2
p = s2

1(n1 − 1) + s2
2(n2 − 1)

n1 + n2 − 2

Unpooled method se and df

Degrees of freedom for independent means (unpooled, when variances are unequal) is calculated rather than
using n− 1 or something similar, and R will calculate it for you:

df =

(
s2

1
n1

+ s2
2
n2

)2

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1
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And the standard error for the unpooled method is

se =

√
s2

1
n1

+ s2
2
n2

Formula: CI
CI for the difference of two (independent) means:

y1 − y2 ± t?(se) where t? = t2T,df

Hypotheses
For the difference of two (independent) means:

H0 : µ1 − µ2 = ∆0 Ha : µ1 − µ2

 6=>
<

∆0

∆0 is a specified (numerical) value of the hypothesized difference of two independent means.

Assumptions
(1) Independence (if random met, this is met)
(2) Randomization
(3) Each group of observations have an approximate normal distribution

Formula: Test Statistic

t = (y1 − y2)−∆0

se

se and df are dependent on the outcome of the variance test

Dependent means
This compares the mean of the difference between two measurements of the same unit or subject. The wording
used is the mean difference. This analysis is for comparing measurements on the same subject/unit; once
before a treatment and once again after the treatment, to detect if there is a difference due to the treatment.

Examples are weight loss programs, Coke vs. Pepsi, compare GDP of countries at 2 different dates (time is
treatment)

Dependent means logistics
The two variables of data need to be subtracted from each other (before − after or after − before) to
calculate all of the differences between measurements.

di: individual differences between measurements

yd =
∑

di

n sample mean difference (mean of the differences)

sd =
√∑

(di−yd)2

n−1 : sample standard deviation of the differences
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Formula: CI
CI for the mean difference:

yd ± t?(se) where se = sd√
n

and t? = t2T,df , df = n− 1

Hypotheses
For the mean difference

H0 : µd = ∆0 Ha : µd

 6=>
<

∆0

Assumptions
(1) Dependence (two measurements per unit/subject)
(2) Randomization
(3) Differences have approximate normal distribution

Formula: Test Statistic

t = yd −∆0

se
and se = sd√

n

Variance test with var.test()

var.test(x,y,alternative=,conf.level=,...)
x and y: either 2 vectors of quantitative data or a formula y~x with y numeric and x character
alternative=: ‘two.sided’ (default), ‘l’ (lowercase L) or ‘less’, ‘g’ or ‘greater’
conf.level=: 0.95 is default; can be modified
...: other options

var.test()

x=c(1,2,3,4,5); y=c(6,7,8,9,10)
var.test(x,y)

F test to compare two variances

data: x and y
F = 1, num df = 4, denom df = 4, p-value = 1
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.1041175 9.6045299

sample estimates:
ratio of variances

1
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var.test()

y=1:10; x=factor(c(rep('a',each=5),rep('b',each=5)))
var.test(y~x)

F test to compare two variances

data: y by x
F = 1, num df = 4, denom df = 4, p-value = 1
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.1041175 9.6045299

sample estimates:
ratio of variances

1

Tests and CIs for independent means
t.test() will give results for hypothesis tests and for CIs.

t.test(x,y,mu=,var.equal=F,paired=F,alternative=,
conf.level=,...)
x and y: either 2 vectors of quantitative data or a formula y~x with y numeric and x character
mu: mu=0 is default; mu is hypothesized value (mu-not)
var.equal=F: F is default for unpooled, T is for pooled
paired=F: F is default (independent means), T is for dependent means
alternative=: ‘two.sided’ (default), ‘l’ (lowercase L) or ‘less’, ‘g’ or ‘greater’
conf.level=: 0.95 is default; can be modified
...: other options

t.test(): Pooled

x=c(1,2,3,4,5); y=c(6,7,8,9,10)
# pooled CI and test
t.test(x,y,var.equal=T)

Two Sample t-test

data: x and y
t = -5, df = 8, p-value = 0.001053
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-7.306004 -2.693996

sample estimates:
mean of x mean of y

3 8

t.test() Unpooled
Also called a Welch test in R
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# unpooled CI and test
t.test(x,y)

Welch Two Sample t-test

data: x and y
t = -5, df = 8, p-value = 0.001053
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-7.306004 -2.693996

sample estimates:
mean of x mean of y

3 8

t.test() Paired (dependent)

# dependent means
x=c(1,2,3,4,5); y=c(2,10,4,-2,6)
t.test(x,y,paired=T)

Paired t-test

data: x and y
t = -0.45175, df = 4, p-value = 0.6749
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-7.145923 5.145923

sample estimates:
mean of the differences

-1

Testing categorical data
For most of the analyses that you have learned about, all are analyzing quantitative data. But that leaves
out a large portion of data, categorical data. Now we can see how to analyze things like:

(1) making sure a sample follows a specific distribution
(2) exploring whether or not two or more categories have a relationship
(3) analyzing data to see how one category is distributed over another

Chi-square distribution
While we have analyses for comparing more than 2 means, we cannot use them when trying to compare two
or more proportions. However, there is a distribution that is related to the standard normal distribution (z)
that works for comparing more than two proportions. Rather than a test statistic for each pair of proportions,
we’d rather like to use just one to prevent the Type I error from inflating. What we do is measure the distance
each sample value is from the average (from the “norm”). If we had a z-score for each pair, the sum of the
squared z-scores would be a new (new to you) distribution called Chi-square (pronounced “ky” as in “sky”),
denoted by χ2. The distribution is a skewed distribution (skewed right) so it is not a symmetric distribution
like z or t, until df →∞.
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χ2 =
n∑
i=1

z2
i = z2

1 + z2
2 + · · ·+ z2

n

χ2 with varying df

The following graph illustrates how the χ2 distribution changes shape with increasing df .
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Assumptions of any Chi-square test
(1) The data must be counts from categories
(2) Independence of observations
(3) Ei ≥ 5; each individual expected value (Ei) must be at least 5

Test statistic (for all 3 tests), df

χ2 =
∑ (observed− expected)2

expected
=
∑ (O − E)2

E

df for GoF is df = k − 1, where k = number of categories

df for Independence and Homogeneity is df = (r − 1)(c− 1)

(r = number of rows, c = number of columns)
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Goodness-of-Fit (GoF)
Chi-square for a one-way table (a table that has categories and counts for each category): In evaluating
whether there is sufficient evidence that a set of observed counts, O1, O2, · · · , Ok in k categories are unusually
different from what would be expected under a null hypothesis. The expected values under the null hypothesis,
called E1, E2, . . . , Ek.

GoF hypotheses
H0 : p1 = p2 = · · · = pk = p0 or

H0 : The data follows < specified > distribution

Ha : At least one pi differs or

Ha : H0 is not true (the data does not follow < specified > distribution))

GoF formulas
Expected value

Ei = npi

You will need to find the probabilities associated with the null hypothesized distribution (given), then multiply
the sample size (the sum of the observations) by each category probability to get the expected values.

GoF H0 rejection
Rejection region

Reject H0 iff pvalue ≤ α where pvalue = P (χ2 ≥ χ2
calc) (used for this course)

Conclusion (in context)
When the null hypothesis is rejected, in terms of the context of the data, it means that we think that the
data does not follow the theoretical (specified) distribution. When we fail to reject the null hypothesis, we
are maintaining that the data does follow the theoretical (specified) distribution

Test of Independence
The test of Independence explores whether two categorical random variables are independent or whether
some level of dependency exists between them. Each dataset will be constructed into a table with I rows
and J columns. Let nij denote the number of individuals in the sample falling in the (i, j)th cell (of row i,
column j) of the table. The following is a prototype of a general table that displays the counts (nij) and is
called a two-way contingency table. I and J (capital I,J) are the row and column totals, respectively.

Data organization

1 2 . . . j . . . J

1 n11 n12 . . . n1j . . . n1J

2 n21
...

...
i ni1 . . . nij . . .
...
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1 2 . . . j . . . J

I nI1 . . . nIJ = n

Independence test hypotheses
H0 : pij = (pi·)(p·j)

Or H0 : The row context and column are independent

Ha : H0 is not true (meaning that rows and columns are dependent)

With i = 1, 2, . . . , I and j = 1, 2, . . . , J

Independence test formulas
Expected values

Eij = ninj
n

= (rtotal)(ctotal)
grandtotal

Independence test rejection
Rejection region
Reject H0 iff pvalue ≤ α where pvalue = P (χ2 ≥ χ2

calc)

Conclusion (in context)
When the null hypothesis is rejected, in terms of the context of the data, it means that we think that the
context of the rows and context of the columns are dependent (there is a dependency). When we fail to
reject the null hypothesis, we are maintaining that the context of the rows and context of the columns are
dependent (there is no relationship).

Homogeneous Test
We are assuming that each individual in every one of the I populations belongs in exactly one of J categories.
An example would be to see if voting habits are the same over regions.

Homogeneous test hypotheses
H0 : p1j = p2j = . . . = pIj
OR
H0 : The row is distributed the same over the column

Ha : H0 is not true (the distribution is not the same for all categories)

With i = 1, 2, . . . , I and j = 1, 2, . . . , J

Homogeneous test formulas+
Test statistic
Same as Independence Test

Expected values
Same as Independence Test

Rejection region
Same as Independence Test

19



Conclusion (in context)
When the null hypothesis is rejected, in terms of the context of the data, it means that we think that the
context of the rows are distributed differently across the context of the columns. When we fail to reject the
null hypothesis, we are maintaining that the context of the rows are distributed similarly across the context
of the columns.

chisq.test()

chisq.test() will give results for hypothesis tests for categorical data or proportions

chisq.test(x,y,p,simulate.p.value=F,...)
x and y: x is a numeric vector or a matrix, y is ignored if x is a matrix
p: a vector of probabilities as length of x, p≥ 0
simulate.p.value=F:Fis default,Tif pvalue to be computed by Monte Carlo simulation if
any $E_i<5$. . . ‘: other options

chisq.test() Independence and homogeneity

# independence and homogeneity
M=matrix(c(762,327,468,484,239,477),byrow=T,ncol=3,nrow=2)
dimnames(M)=list(gender=c("F","M"),party=c("Democrat","Independent","Republican"))
chisq.test(M)

Pearson's Chi-squared test

data: M
X-squared = 30.07, df = 2, p-value = 2.954e-07

chisq.test() GoF

# GoF
x=c(89,37,30,28,4)
p=c(0.40,0.15,0.15,0.19,0.11)
chisq.test(x,p=p)

Chi-squared test for given probabilities

data: x
X-squared = 20.516, df = 4, p-value = 0.000395

Analysis of variance (ANOVA or AOV)
The methods learned for one- and two-sample only dealt with comparisons of two means or proportions. The
question is, why not just do several 2-sample tests if we have at least two means? The reason is the Type
I error, α, α = P (Reject H0|H0 true) (rejecting a true null hypothesis). By doing several 2-sample t-tests
simultaneously, since they would not be wholly independent, it increases the Type I error rate.
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Analysis of variance
As an example, the number of 2-sample comparisons is the number of factor (treatment) groups choose 2
(as in a combination),

(
k
2
)
where k is the number of factor groups and 2 because we are doing 2-sample

comparisons. So if we had say k = 4 groups, then the number of comparisons to do in that case would be(4
2
)

= 4!
2!(4−2)! = 6, each having their own Type I error rate of 5%, meaning that the overall Type I error rate

for the entire experiment would be 6(0.05) = 0.3. The ANOVA procedure protects the Type I error rate from
inflating by doing multiple tests.

Hypotheses
The hypotheses for a (1-way) ANOVA for CRD (completely randomized design). The hypotheses only state
that there are (or are not) differences among the factor group means but does not indicate where the
differences are, just if there are some

H0 : µ1 = µ2 = · · · = µk or

H0 : α1 = α2 = · · · = αk = 0

Ha : H0 not true (or at least one µi differs (or αi 6= 0))

The model
ANOVA uses a linear model to fit the data

yij = µ+ αi + εij

yij : response (ith factor level, jth replicate (observation))
µ: the overall (grand) mean
αi: the treatment (factor) effect (a slope); there is a different treatment effect (slope) for each factor level
εij : residual error term

Residuals
The residuals are the errors; the difference between the observed value in the dataset and the estimated value
from our model we fit (through the anova process). A residual is

eij = yij − ŷij

eij : sample residual
yij : observed value of y
ŷij : estimated value of y from estimated model

The residuals and estimated values are used in diagnostics for checking assumptions

Anova terms I
The results of the analysis is displayed in a table. Shown below is the generic version of the table and the
following slides will define and give formulas for the values of the ANOVA output table.

Source df SS MS F Pr>F

Treatment (Factor) k-1 SST MST = MST
MSE P (F > Fcalc)

Error (Residual) n-k SSE MSE
Total n-1 TSS
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Anova terms II
Most of the calculations involve figuring out the variation (variances) between groups, within groups, and the
total variation.

Sources of variation: (a) Factor (between), (b) Error (within, residuals), and (c) Total

Sums of squares (basically numerators of variances): (a) Factor or Treatment (SS(Factor) or SST ): sum of
squared distances between each factor mean (yi) and the overall (grand) mean (y.. or ¯̄y), (b) Error (SS(Error)
or SSE): sum of squared distances between each individual observation (yij) and their corresponding factor
mean (yi), and (c) Total(SS(Total) or TSS): sum of squared distances between each individual observation
(yij) and the grand mean (y..)

Anova terms III
Degrees of freedom (df): (a) Factor: df1 = k−1 where k is the number of factor groups, (b) Error: df2 = n−k
where n is the total number of observations in the experiment, and (c) Total: dftotal = n− 1

Mean squares (basically variances): (a) Factor (MS(Factor)): variance for factor is sum of squares for factor
divided by the factor degrees of freedom (df1), (b) Factor (MS(Error)): variance for error is sum of squares
for error divided by the error degrees of freedom (df2); also computed by the sum of each group variance
multiplied by each group sample size minus 1,and (c) Total: could be calculated in the same manner but is
not usually calculated nor used

Anova terms IV
The main goal of anova is to calculate the sums of squares (SS), mean square (MS), and the test statistic.
The following are the calculations for all the values needed for the hypothesis test.

SS(Factor) = SST =
∑

ni(yi − y..)2

SS(Error) = SSE =
∑

(yij − yi)2 =
∑

s2
i (ni − 1)

SS(Total) = TSS =
∑

(yij − y..)2 = SST + SSE

Anova Terms V
Mean squares

MST = SST

df1
= SST

k − 1

MSE = SSE

df2
= SSE

n− k

There is no calculation of the Total mean square.

Anova Terms VI
Test Statistic: called an F statistic from the F probability distribution. Like the χ2 distribution, F changes
shape as df (2 of them) vary. The first df is df1 and the second is df2 from the ANOVA output table. The
rows of the distribution table are df1 and the columns are df2.
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Anova Terms VII

F = SST/(k − 1)
SSE/(n− k) = MST

MSE

pvalue = P (F > Fcalc,df1,df2)

reject H0 if pvalue ≤ α

The F distribution has two degrees of freedom, df1 and df2. df1 = k − 1 and df2 = n− k

Assumptions of ANOVA
(1) E(εij) = 0; the mean of the residuals should be approximately 0
(2) V (εij) = σ2

ε ; the variance of the residuals should be constant for all values of the response
(3) Cov(εij , ε′ij) = 0; independence of residuals
(4) εij ∼ N(0, σ2

ε ); residuals should have an approximate normal distribution with mean 0 and constant
variance

Example code will show how to check the assumptions graphically. Regardless of whether or not the null
hypothesis is rejected in ANOVA, assumptions need to be checked to make sure the correct model was being
used.
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Diagnostics
(1) E(εij) = 0; hisotgram of residuals is centered around 0
(2) V (εij) = σ2

ε ; residuals vs. predicted plot has no pattern
(3) Cov(εij , ε′ij) = 0; DW stat: 1.5 ≤ DW ≤ 2.5
(4) εij ∼ N(0, σ2

ε ); QQplot has most points along y = x line or histogram of residuals is approximately
normal

anova in R

There are a couple of different methods to carry out an ANOVA.

(1) fit=lm(y~x,data=) with anova(fit)
(2) fit=aov(y~x,data=) with summary(fit)

Both will give the same results. However, some multiple comparison procedures in R need the aov() version
rather than the lm() version.

anova diagnostics in R

The diagnostics to check assumptions are three main graphs. The values needed to make the graphs are
residuals and estimated values.

pred=fitted(fit): fitted (estimated/predicted) value (ŷij)
res=rstudent(fit): residuals (standardized)
hist(res): histogram of residuals to check if mean≈ 0 (and normality)
plot(pred,res); abline(h=0): scatterplot of x = pred,y = res with trendline y = 0 to check if variance of
residuals is constant
dwt(fit): DW test in car package; check only if time component in dataset (mostly used in regression)
qqnorm(res); qqline(res): normal probability plot to check normality of residuals with y = x line

anova: handwashing
Learning to read the output from a statistical software program. The following example will use output from
the program R.

Washing hands is supposed to remove potentially harmful (and definitely gross) bacteria from your hands, thus
minimizing the spread of illness and other random goobers (not the goofy kind). A completely randomized
design was used to study different hand-washing methods to determine if there are differences in the amount
of bacteria left on hands based on method. A total of 32 subjects were randomly assigned to one of 4 methods:
water only (W), regular soap (S), antibacterial soap (ABS), and alcohol spray (AS). Is there sufficient evidence
that at least one hand-washing method differs in the amount of bacteria left on the hand?

anova: handwashing
H0 : α1 = α2 = α3 = α4 = 0 (H0 : µ1 = µ2 = µ3 = µ4)

Ha : H0 not true
boxplot(Bacteria~Method,data=hands,main='Bacteria left by Method')
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anova: handwashing

fit=lm(Bacteria~Method,data=hands)
anova(fit)

Analysis of Variance Table

Response: Bacteria
Df Sum Sq Mean Sq F value Pr(>F)

Method 3 29882 9960.7 7.0636 0.001111 **
Residuals 28 39484 1410.1
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova: handwashing
Notice all the df , SS, MS, F , and pvalue is all input into a table of output. The main things of interest
are the F value and pvalue. F = 7.0636 with pvalue = 0.001111. Since pvalue = 0.001111 ≤ α(0.05), H0 is
rejected. There is at least one hand-washing method is better at removing bacteria from the hands. Another
way to word it is that method of handwashing is significant.

Diagnostic graphs
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res=rstudent(fit); pred=fitted(fit)
hist(res,xlab='Residuals')
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Diagnostic graphs

plot(pred,res,main='Residuals vs. predicted')
abline(h=0)
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Diagnostic graphs

library(car)
dwt(fit)

lag Autocorrelation D-W Statistic p-value
1 -0.3131268 2.568781 0.058

Alternative hypothesis: rho != 0

Diagnostic graphs

qqnorm(res,xlab='Residuals'); qqline(res)
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Diagnostic graphs
The first graph should have the highest peak of the distribution be in the center around 0; it is met as long
as the residual mean is close to 0. The example graph shows that the center of the distribution is centered
right around 0, indicating that the mean of the residuals is approximately 0.

The second graph should show no pattern of increasing or decreasing variation or any other pattern that
indicates the variance of the residuals is not constant (approximately equal for all values of y). The example
graph shows that there is really no pattern (it kind of looks like there is a pattern but the vertical pattern is
the grouping of the factor levels and is not a pattern to worry about).

Diagnostic graphs
The DW test showed that the DW test statistic is within our acceptance range so the residuals are independent.
Usually unless there is a time component in the dataset, this is not always necessary to check.

The last graph is the normal probability plot of residuals, so it should indicate if the distribution is normal
(approximately). The graph is created by plotting the sample quantiles of the data against the theoretical
quantiles the data should have if the data is normal. If it is normal, most points should line up along the
y = x line without too many deviations or weird curves. The example graphs show most points are along the
line so the residuals have an approximate normal distribution.

The assumptions are all met

Multiple Comparisons
Multiple comparisons are only to be done, if and only if (iff) the null hypothesis of ANOVA is rejected. (If
the null is not rejected, you are saying there are no differences, so why would you try and find where the
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non-existent differences are?!?)

So now that we have seen an example of rejecting the null hypothesis of an ANOVA problem, we can just
look and see if there are differences, right? Nope! That would be too easy, wouldn’t it?

Multiple Comparisons
On an earlier slide from this lecture, the Type I error rate would increase, depending on how many 2-sample
comparisons we do? That is why. The hand-washing example with k = 4 would require

(
k
2
)

=
(4

2
)

= 6
2-sample comparisons, and the larger k is, the more comparisons to do and the larger Type I error without a
modified procedure to execute the comparisons.

There are many different multiple comparisons, we will learn one of the more commonly used ones called
Tukey’s Honest Significant Difference (Tukey’s HSD).

Tukey’s (not turkey) HSD
This is a modified 2-sample CI that uses a different statistical distribution called the Studentized Range
distribution, denoted as qα(k, df2). You will not have to use the distribution, just interpret the output from
the comparison.

Any pair of means will be determined to be significantly different if the magnitude of their difference is
greater than the cutoff value, which is in essence a bound (margin of error). That is if,

|yi − yj | ≥ HSD where HSD = qα(k, df2)
√
MSE

ni

Tukey’s HSD
Let’s wash some hands! Now that we rejected the null hypothesis, a multiple comparison, specifically Tukey’s
HSD, is appropriate.

Toward the bottom of the following output, there is an section with a header that reads Treatments with
the same letter are not significantly different., the treatment means are listed in order (largest
to smallest) and there is a column called groups. The letters tell you which groups are statistically different.
The groups that have the same groups letter are statistically the same. Different groups letters are statistically
different.

Tukey’s HSD
There is also a value close to the groups that says Minimum Significant Difference. The value of the
HSD is what the absolute value of the difference between any 2 means needs to be greater than if we wanted
to look at the comparison in CI-type formatting (we will not here but something for future classes use of
statistics).

Tukey’s HSD general form
HSD.test(fit,'factor',group=T,console=T,...)
fit: fit object of class lm()
'factor': name of factor variable with quotes
group=T: use grouping letters for differences
console=T: display results in console

Tukey’s HSD

29



library(agricolae)
fit=aov(Bacteria~Method,data=hands) # HSD.test likes aov
HSD.test(fit,'Method',group=T,console=T)

Study: fit ~ "Method"

HSD Test for Bacteria

Mean Square Error: 1410.143

Method, means

Bacteria std r Min Max
ABS 92.5 41.96257 8 20 164
AS 37.5 26.55991 8 5 82
S 106.0 46.95895 8 51 207
W 117.0 31.13106 8 74 170

Alpha: 0.05 ; DF Error: 28
Critical Value of Studentized Range: 3.861244

Minimun Significant Difference: 51.26415

Treatments with the same letter are not significantly different.

Bacteria groups
W 117.0 a
S 106.0 a
ABS 92.5 a
AS 37.5 b

Tukey’s HSD
Minimum Significant Difference: 51.26415. The value 51.26415 is the HSD value that the absolute
value of the difference between any 2 means needs to be greater than.

The groups lettering indicates that AS (alcohol spray) has the only different letter, b, and is significantly
different than the other methods (all other methods share the letter a so they are all the same).

Simple Linear Regression (slr)
• SLR analysis explores the linear association between an explanatory (independent) variable, usually

denoted as x, and a response (dependent) variable, usually denoted as y
• This type of data is called bivariate data (data with two (bi) variables)
• The point is to see if we can use a mathematical linear model to describe the association (relationship)

between the two variables
• Using one known value to estimate the other value, in addition to seeing how strong the relationship is
• You are familiar with y = mx+ b from algebra, where m is the slope and b is the y-intercept (value of
y when x = 0), which is a mathematical linear equation, a deterministic equation.
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The population regression model
Notice that it is basically the same as you have seen and used before (y = mx+ b):

yi = β0 + β1xi + εi

Where:

• yi: value of the response (dependent) variable
• β0: the value of the y-intercept (when x = 0)
• β1: the value of the slope (the change in y due to a one unit increase in x, not rise

run )
• εi: the residual (error) term

The sample regression model
Is used once there are estimated values from the data:

ŷ = β̂0 + β̂1x

Where:

• ŷ: estimate of the value of the ith response (dependent) variable

• β̂0: the estimate of the value of the y-intercept (ŷ when x = 0)

• β̂1: the estimate of the value of the slope (the change in y due to a one unit increase in x (Not rise
run )

• Note that ε dropped off from the other model. This is because of the first assumption of regression,
E(εi) = 0: the mean of the residuals = 0.

The assumptions for SLR are the same as ANOVA.

Residuals
Residuals: εi are the population residuals and ε̂i = ei are the sample residuals

ei = yi − ŷ. If ei > 0, the model underestimated the response and if ei < 0, the model overestimated the
response.

Analysis tools: scatterplot graph
• First thing that is necessary is to look at a scatterplot of the two variables; it is a type of graph that

you are familiar with from algebra
– x is the explanatory (independent) variable and goes along the x-axis
– y is the response (dependent) variable and goes along the y-axis

• The values of x and ŷ are an ordered pair of data, (x, ŷ) that can be graphed on the Cartesian
(rectangular) coordinate system

• The value of x that will be given is most often one that is an observed value of x so that an estimation
of the residual, ei = yi − ŷi can be calculated.

Analysis tools: scatterplot graph
• A scatterplot of the data shows if there is a linear association between the explanatory (independent)

variable and the response (dependent) variable
– When x and y both increase, the slope (relationship) is positive
– When x increases while y decreases, the slope (relationship) is negative
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• The point of visually checking the scatterplot before doing the regression analysis is decide if there is
at least a fair linear relationship between x and y
– If you do not have a linear relationship, then use of regression analysis is not recommended as the

results cannot be used with the given dataset
• The regression line is also called a trend line.

Analysis tools: scatterplot graph
This has positive slope (x increases and y increases)
plot(waiting~eruptions,main=bquote(beta[1]>0),data=faithful)
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Analysis tools: scatterplot graph
This has negative slope (x increases and y decreases)
with(decagon,plot(Time,Costs,main=bquote(beta[1]< 0)))
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Analysis tools: scatterplot graph
This has 0 slope (and a lot of random scatter)
with(randu[1:100,],plot(x,y,main=bquote(beta[1]%~~%0)))

33



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β1 ≈ 0

x

y

Analysis tools: scatterplot graph
This has 0 slope
plot(x3,y3,main=bquote(beta[1]%~~%0)); grid(2,4,lwd=2)

34



−40 −20 0 20 40

3
4

5
6

7

β1 ≈ 0

x3

y3

Analysis tools: scatterplot graph with regression line
Many times in regression, we want to see what the line of the regression equation will look like on the
scatterplot of the raw data. It is not strictly necessary but the point of this analysis is to explore and
understand the linear relationship between two variables. If you do not have a linear relationship, then use of
this analysis is not recommended as the results cannot be used with the given dataset. The regression line is
also called a trend line.

Analysis tools: scatterplot graph with regression line

plot(waiting~eruptions,main="Raw Data Scatterplot for Old Faithful",data=faithful)
abline(lm(waiting~eruptions,data=faithful))
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Slope and intercept formulas
Slope:

β̂1 =
∑

(xi − x)(yi − y)
s2
x(n− 1)

Intercept:

β̂0 = y − β̂1x

Correlation
To determine the strength of the relationship between two quantitative variables, we use a measure called
correlation

Defn: Is a calculation that measures the strength and direction (positive or negative) of the linear relationship
between 2 quantitative variables, x and y

Correlation 6= causation

It is extremely important to note that just because two variables have a mathematical correlation IT DOES
NOT MEAN X CAUSES Y !!!. To establish actual causation, repeatable experimentation must be done.

Correlation logistics
• It is bound between -1 and 1 (−1 ≤ r ≤ 1)
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– r = −1 and r = 1 are perfect linear relationships

– r = 0 implies both no linear relationship and x, y are independent

• r makes no distinction between x and y

• r has no units of measurement
• if r > 0, then β̂1 > 0, r < 0, then β̂1 < 0
• Correlation is denoted as r for sample correlation and ρ for the population correlation.

r = 1
n− 1

∑ (xi − x̄)(yi − ȳ)
sxsy

Coefficient of Determination, R2

R2 is called the coefficient of determination:

• It is the proportion (or ×100%) of observed variation that can be explained by the relationship between
x and y

• 0 ≤ R2 ≤ 1: It is bound between 0 (0%) and 1 (100%)
– The closer to 1 (100%), the more variation we can explain and also the stronger the linear

relationship between x and y
∗ An acceptable baseline for R2 would be when R2 ≥ 60%

• R2 = (r)2 ∴ r = ±
√
R2

– if the slope is positive, then r is positive, if the slope is negative, then r is negative.

Analysis tools: scatterplot graph
Relatively strong, positive correlation
plot(waiting~eruptions,main="r = 0.9",data=faithful,xlim=c(0,6),ylim=c(0,120))
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Analysis tools: scatterplot graph
Moderately strong, negative correlation
with(decagon,plot(Time,Costs,main="r = -0.8"))
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Analysis tools: scatterplot graph
No correlation
with(randu[1:100,],plot(x,y,main="r = 0"))
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Analysis tools: scatterplot graph
No correlation but there is a relationship, it is not a linear relationship
plot(x2,y2,main="r = 0")
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General form of lm() for model
First a linear model must be created. Since other objects from the model will be needed for diagnostics, use
the assignment statement to create an object of the lm() model.

lm(formula,data,...)

formula: usually y~x or some derivation thereof (y~x for SLR, y~x1+x2+...+ for multiple regression, etc.)
data: dataset object name

SLR analysis output displayed with summary()

The next thing once the model is run and stored as an object, to display the analysis results. summary() will
display parameter estimates (slope and intercept) and other regression statistics. There are sums of squares
calculations that are only displayed with anova().

Using lm() and summary()

fit=lm(waiting~eruptions,data=faithful); summary(fit)

Call:
lm(formula = waiting ~ eruptions, data = faithful)

Residuals:
Min 1Q Median 3Q Max

-12.0796 -4.4831 0.2122 3.9246 15.9719
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.4744 1.1549 28.98 <2e-16 ***
eruptions 10.7296 0.3148 34.09 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.914 on 270 degrees of freedom
Multiple R-squared: 0.8115, Adjusted R-squared: 0.8108
F-statistic: 1162 on 1 and 270 DF, p-value: < 2.2e-16

Objects in the fit model
There are many objects that are a part of the fit model calculations and they can be extracted for use in
other calculations. An object of class “lm” is a list containing at least the values found on the following table.
To access these objects, fit$objectname where objectname is one of the objects from the table on the next
slide.

List of fit model objects

Object Defn
coefficients named vector of coefficients
residuals residuals (y-yhat)
fitted.values fitted mean values (yhat)
weights only for weighted fits
df.residual residual df
contrasts only if contrasts used
. . . more options

coefficients object
The coefficients are useful once extracted for use of the regression equation for estimations. The
coefficients object is a named vector, meaning that even when using the index number method, the name
can still be displayed. The use of [[]] (double square brackets will eliminate the name).

As an example, to create an object called slope, it is the 2nd element in the coefficients vector, intercept
is the first element. A single set of square brackets around 1 or 2 will keep the name of the coefficients
vector, while double square brackets will eliminate the name.

slope=fit$coefficients[2] or slope=fit$coefficients[[2]]

Extraction of equation coefficients

intercept=fit$coefficients[1]; b0=fit$coefficients[[1]]
slope=fit$coefficients[2]; b1=fit$coefficients[[2]]
intercept; slope

(Intercept)
33.4744

eruptions
10.72964
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b0; b1

[1] 33.4744

[1] 10.72964

Using the regression equation
Use of the equation works just like you are used to; given a specified value of x, solve the equation for the
estimated y value called ŷ (y-hat)

Find the values of ŷ and ei for each of the following values: (2.283, 62), (5.1, 96)

Estimations (ŷi and ei)

x1=2.283; y1=62; x2=5.1; y2=96
yhat1=b0+b1*x1; yhat2=b0+b1*x2
e1=y1-yhat1; e2=y2-yhat2
yhat1; e1

[1] 57.97017

[1] 4.029832
yhat2; e2

[1] 88.19557

[1] 7.804432

Extracting R2 to calculate r
R2 is on the R output and is found under Multiple R-squared. R2 = 0.8115. R2 is the 8th element of the
summary of the fit model. summary(fit)[[8]]
rsq=summary(fit)[8]; rsq; R2=summary(fit)[[8]]; R2

$r.squared
[1] 0.8114608

[1] 0.8114608
r=sqrt(R2); r; cor(faithful)

[1] 0.9008112

eruptions waiting
eruptions 1.0000000 0.9008112
waiting 0.9008112 1.0000000

CIs for β̂1, β̂0

All the following standard errors are provided in the regression analysis output.

β̂j ± t?(seβ̂j
)
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Where β̂j is either β̂0 or β̂1; same goes for the se, t? = tα/2,df and df = n− 2 for both cases.

seβ̂0
=

√
s2
ε

(
1
n

+ x̄2

s2
x(n− 1)

)
seβ̂1

=

√
s2
ε

s2
x(n− 1)

s2
ε =

∑
(ŷi − yi)2

n− 2 =
∑
e2
i

n− 2

Hypothesis tests for the estimated slope (β1) and intercept (β0)
• Most often the slope β̂1 is the only real test of interest

• Many times the value of x = 0 is not in the dataset (or the fact that maybe x = 0 is not possible in the
population the data was sampled from). Without x = 0 in the dataset (or even possible at all), the
intercept does not make sense in context

• Additionally, the slope is what is driving the relationship whereas the intercept just represents the
value where the regression line crosses through the y-axis

• There are some economic datasets and many others that utilize the intercept because it make sense
both mathematically and realistically.

Hypothesis tests for the estimated slope (β1) and intercept (β0)
• The null hypothesis for the slope is to test if the slope is equal to zero

– A slope of zero is a horizontal line, where any value of x has the same y value
• Most often of interest is whether or not it is significant, the alternative hypothesis is to see if the slope

is different from zero
– Realistically the hypothesized value could be something other than 0 if there is a need, like seeing

if it has increased or decreased since the previous sample was taken and analyzed

Test for β1, the slope
Hypotheses:

H0 : β1 = 0 vs. Ha : β1 6= 0

Test Statistic:

t = β̂1 − β1

seβ̂1

• The seβ̂1
and df = n− 2 are the same as for CIs

• Rejection criteria is the same as the t-tests learned in earlier modules (starting in module 9). Rejection
of the null means the slope is significant; there is a significant relationship between x and y. Not
rejecting the null means there is no significant relationship between x and y

Test for β0, the intercept
Hypotheses:

H0 : β0 = 0 vs. Ha : β0 6= 0

Test Statistic:
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t = β̂0 − β0

seβ̂0

• The seβ̂0
and df = n− 2 are the same as for CIs

• Rejection criteria is the same as the t-tests learned earlier; rejection of the null means the intercept is
significant. Not rejecting the null just means the intercept is not significant (but has no impact on the
significance of the slope)

CI for µ̂
This is referred to as a CI for µ, an average response, computed from the regression line for a given value of
x, denoted as x?. Since it is an average response that is why it uses the notation of µ̂ and to distinguish it
from a prediction interval (next slide).

µ̂± t?(seµ̂)

Where µ̂|x=x? = β̂0 + β̂1x
?, t? = tα/2,df and df = n− 2 for both CIs and PIs.

seµ̂ =

√
s2
ε

(
1
n

+ (x? − x)2

s2
x(n− 1)

)

PIs (prediction intervals) for ŷ
This is referred to as a CI for ŷ, a single response, computed from the regression line for a given value of x,
denoted as x?. Since it is a single response that is why it uses the notation of ŷ and to distinguish it from a CI

ŷ ± t?(seŷ)

Where ŷ|x=x? = β̂0 + β̂1x
?, t? = tα/2,df and df = n− 2 for both CIs and PIs.

seŷ =

√
s2
ε

(
1 + 1

n
+ (x? − x)2

s2
x(n− 1)

)

CIs and PIs
predict.lm(object,newdata,interval=,level=,...)

object: fit model; object of class “lm”
newdata: (optional) data frame for specified variable values
interval: ‘confidence’ or ‘prediction’
level: confidence level; 0.95 is default
...: more options

The first thing to do is to create a data frame with the specific observations you want use for CIs or PIs (x∗)
and then use it with the fit object to find intervals. If you do not, the function will calculate the intervals
using all of the data points.
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CIs PIs with predict.lm()

newfaith=data.frame(faithful[c(4,149),]) # same ones from before
predict.lm(fit,newfaith,interval='confidence')

fit lwr upr
4 57.97017 56.94264 58.99769
149 88.19557 86.97223 89.41890
predict.lm(fit,newfaith,interval='prediction')

fit lwr upr
4 57.97017 46.28148 69.65886
149 88.19557 76.48804 99.90309

Diagnostic plots used to check assumptions of slr
For checking assumptions, we need 3 graphs and one test:
- Histogram of the residuals (#1,4)
- Scatterplot of residuals vs. predicted (#2)
- Independence of residuals are checked with a DW test (#3)
- A normal probability plot, also called a QQ plot (#4)

Extracting residuals and fitted values
There are functions as well as the residuals and fitted values can be extracted from the model. Less typing
when using functions.

res=rstudent(fit) for residuals (these are standardized residuals; like z-scores for every residual).

pred=fitted(fit) for estimated values. The name is unimportant, they can be called yhat, fits, est,
. . . whatever.

Assumption 1: E(εi) = 0
Mean of the residuals is 0. For this, we look at a histogram of residuals to see if it is centered around zero
(see if the histogram has the highest bar at zero)
res=rstudent(fit); pred=fitted(fit)
hist(res,main='Histogram of residuals')
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Histogram of residuals
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Assumption 2: V (εi) = σ2
ε

The variance of the residuals is constant (the same) for all values of ŷ. The plot of x=predicted and y=residuals
and it should have no discernible pattern (random scatter)
plot(pred,res,main=' Residuals vs. Predicted'); abline(h=0)
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Assumption 3: Cov(εi, ε′
i) = 0

The covariance of any two residuals is equal to 0. Covariance of 0 implies that the two variables are
independent. The Durbin-Watson (DW) test will find out if the residuals are independent. If 1.5 ≤ DW ≤ 2.5
then the residuals are independent.
library(car)
dwt(fit)

lag Autocorrelation D-W Statistic p-value
1 -0.2767457 2.542647 0

Alternative hypothesis: rho != 0

Assumption 4: εi ∼ N(0, σ2
ε )

Normality of residuals means that the histogram of residuals should be approximately symmetric/bell-shaped
or that the QQplot (normal probability plot) shows that most points are along y=x line
qqnorm(res,main='QQPlot of Residuals'); qqline(res)

48



−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

QQPlot of Residuals

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

49


	Introduction
	Terms I
	Terms II
	Assumptions
	General Form
	CI forms
	Hypothesis tests
	Terms
	Hypothesis Testing Checklist
	Hypotheses
	Hypotheses for \mu
	Hypotheses for \pi
	Assumptions
	Test Statistic
	Rejection Region
	Critical Value Approach H_a: <
	Critical Value Approach H_a: >
	Critical Value Approach H_a: \neq
	Results and Conclusion
	pvalue logistics I
	pvalue logistics II
	H_a:\text{ }> upper tail test
	H_a:\text{ }< lower tail test
	H_a:\text{ }\neq two tail test
	pvalue rejection Examples
	CIs and tests in R
	Tests and CIs for one-sample
	t.test() H_a:~\ne
	t.test() H_a:~>
	t.test() H_a:~<
	Comparing two groups
	Independent means
	Figuring out if \sigma^2_1\approx\sigma^2_2 or \sigma^2_1\neq\sigma^2_2
	Variance test hypotheses
	Test statistic and pvalue for variance test
	Variance test pvalue and conclusions
	Pooled method se and df
	Unpooled method se and df
	Formula: CI
	Hypotheses
	Assumptions
	Formula: Test Statistic
	Dependent means
	Dependent means logistics
	Formula: CI
	Hypotheses
	Assumptions
	Formula: Test Statistic
	Variance test with var.test()
	var.test()
	var.test()
	Tests and CIs for independent means
	t.test(): Pooled
	t.test() Unpooled
	t.test() Paired (dependent)
	Testing categorical data
	Chi-square distribution
	\chi^2 with varying df
	Assumptions of any Chi-square test
	Test statistic (for all 3 tests), df
	Goodness-of-Fit (GoF)
	GoF hypotheses
	GoF formulas
	GoF H_0 rejection
	Test of Independence
	Data organization
	Independence test hypotheses
	Independence test formulas
	Independence test rejection
	Homogeneous Test
	Homogeneous test hypotheses
	Homogeneous test formulas+
	chisq.test()
	chisq.test() Independence and homogeneity
	chisq.test() GoF
	Analysis of variance (ANOVA or AOV)
	Analysis of variance
	Hypotheses
	The model
	Residuals
	Anova terms I
	Anova terms II
	Anova terms III
	Anova terms IV
	Anova Terms V
	Anova Terms VI
	Anova Terms VII
	Assumptions of ANOVA
	Diagnostics
	anova in R
	anova diagnostics in R
	anova: handwashing
	anova: handwashing
	anova: handwashing
	anova: handwashing
	Diagnostic graphs
	Diagnostic graphs
	Diagnostic graphs
	Diagnostic graphs
	Diagnostic graphs
	Diagnostic graphs
	Multiple Comparisons
	Multiple Comparisons
	Tukey's (not turkey) HSD
	Tukey's HSD
	Tukey's HSD
	Tukey's HSD general form
	Tukey's HSD
	Tukey's HSD
	Simple Linear Regression (slr)
	The population regression model
	The sample regression model
	Residuals
	Analysis tools: scatterplot graph
	Analysis tools: scatterplot graph
	Analysis tools: scatterplot graph
	Analysis tools: scatterplot graph
	Analysis tools: scatterplot graph
	Analysis tools: scatterplot graph
	Analysis tools: scatterplot graph with regression line
	Analysis tools: scatterplot graph with regression line
	Slope and intercept formulas
	Correlation
	Correlation logistics
	Coefficient of Determination, R^2
	Analysis tools: scatterplot graph
	Analysis tools: scatterplot graph
	Analysis tools: scatterplot graph
	Analysis tools: scatterplot graph
	General form of lm() for model
	SLR analysis output displayed with summary()
	Using lm() and summary()
	Objects in the fit model
	List of fit model objects
	coefficients object
	Extraction of equation coefficients
	Using the regression equation
	Estimations (\hat{y}_i and e_i)
	Extracting R^2 to calculate r
	CIs for \hat{\beta}_1, \hat{\beta}_0
	Hypothesis tests for the estimated slope (\beta_1) and intercept (\beta_0)
	Hypothesis tests for the estimated slope (\beta_1) and intercept (\beta_0)
	Test for \beta_1, the slope
	Test for \beta_0, the intercept
	CI for \hat{\mu}
	PIs (prediction intervals) for \hat{y}
	CIs and PIs
	CIs PIs with predict.lm()
	Diagnostic plots used to check assumptions of slr
	Extracting residuals and fitted values
	Assumption 1: E(\epsilon_i)=0
	Assumption 2: V(\epsilon_i)=\sigma^2_{\epsilon}
	Assumption 3: Cov(\epsilon_i,\epsilon_i')=0
	Assumption 4: \epsilon_i \sim N(0,\sigma^2_{\epsilon})

