
Working examples with R
Statistics 427: R Programming

Module 16

2020

To Infinity, and Beyond! How about the Sol System?
Start with Newton’s law of gravitation and look at the implication of the shape of the Earth’s orbit is.
Numerically solving the gravity equations to obtain directly the project path of the Earth around the sun.

There will be many calculations involved and will be using R for what its meant to do. Do try this at home!

Newton’s law
Newton’s universal law states that there is a force of attraction between any two bodies (objects) having
mass. The force decreases with the square of the distance between the two masses and it proportional to the
product of the two masses. Newton was able to show mathematically that this law implies Kepler’s laws of
planetary motion; further it also predicts phenomena beyond Kepler’s ellipses.

For instance, according to Newton’s law, an object with sufficient velocity will not orbit another much larger
object but will rather execute a flyby in which its trajectory is bent by the large object’s gravity. Apollo 13
made use of this when it was disabled on its way to the moon in 1970. They executed a flyby of the moon
that sling-shotted (roadrunner) them around the moon and returned home safely (yay!).

Setup
Set up a coordinate system for the Earth (the name Earth is boring, I am going to call her Terra from now
on; and it is unfair our planet has such a boring name considering the rest of our solar system’s planets are
freaking GODS! Why did we not name her Hera or Juno. . .) and the sun.

1

https://www.youtube.com/watch?v=m0GqbUc6800

θ

Sun

Earth

r

ay

ax

a

x

y

Setup
(1) the sun is at the origin with Earth currently at point (x, y)
(2) Denote mass of sun M , mass of Earth m
(3) goal is to calculate the trajectory of Earth using Newton’s law and the changes in position over a small

time interval (a few hours)
(4) Update Earth’s position with new points (x, y)
(5) Calculate another position. . .

Velocities
To calculate different (x, y) pairs for positions, we need to know how fast everything is moving around out
there. Let vx and vy be the velocities of x and y, respectively. If t is time and t is a very small interval
of time, calculate a change in x by the product vxt and a change in y by the product vyt. One thing to
remember is that the values of x and y change during every time interval but the velocities of Earth in those
directions will also change. Gravity is a force so it changes the velocity of an object. Force values will differ
with every different distance of Earth from the sun. Every time interval will need a calculation of how much
vx and vy change, in addition to changes in x and y.

Review of Newton’s laws
Newton’s second law of motion:

F = ma

F : force acting upon object
m: mass of Earth
a: acceleration of Earth

Review of Newton’s laws
According to Newton’s law of gravitation, the gravitational attraction force between the sun and Earth,
denoted by FMm, obeys an inverse-square relationship:

2

FMm = −GMm

r2

G: universal gravity constant
M : mass of sun
m: mass of Earth
r: distance between the centers of sun and Earth

Review of Newton’s laws
For gravity, these laws are expressions of the same force:

F = FMm

∴ ma = −GMm

r2

Review of Newton’s laws
Canceling the ms:

a = −GM
r2

This acceleration is always in the direction of the sun. The previous equations are for a one-dimensional
coordinate system. The negative sign for gravity designates that gravity acceleration tends to decrease the
position of the Earth on a line connecting the Earth and the sun. The current general formalization of
Newton’s laws uses concepts form vector calculus for independence of coordinate system.

Application of gravity acceleration
Gravity acceleration has a component in both x and y directions. In the previous figure, the arrow labeled a
depicts the gravitational acceleration pulling Earth in the direction of the sun. The trig functions explored in
a previous module gives us

ax = a cos θ

ay = a sin θ

Yay trigonometry again!
θ is the angle made by the line connecting the Earth to the sun with the line given by the x-axis. Using
Pythagoras theorem, we can express a, cos θ, sin θ, and r in the previous components all in coordinates of x
and y

By the aid of Pythagoras
r2 = x2 + y2

r =
√
x2 + y2 = (x2 + y2)1/2

cos θ = x

y

sin θ = y

r

3

substitutions in algebra
Now substitute back in

ax = a cos θ =
(
−GM

r2

)(x
r

)
=

− GMx

(x2 + y2)3/2

and

ay = a sin θ =
(
−GM

r2

)(y
r

)
=

− GMy

(x2 + y2)3/2

Velocities
It is the current accelerations of x and y, calculated for the current location of the Earth (x and y), that allow
us to compute changes in the velocities of vx and vy. The amount of change in vx during t is the product of
the rate at which vx changes and t; but the rate at which vx changes is just the acceleration component ax

(same basic approach for vy as well)

vx = axt and vy = ayt

Move the Earth. . . that’s where I keep all my stuff
Yes, move the Earth to its future positions with new values of x, y, vx, vy, and t are calculated as the old
values (previous position in time) plus the changes.

xnew = x+ xold

ynew = y + yold

...

Odd and ends before launch
Needed:

(1) G, M , starting values of x, y, vx, vy, and the value of t
(2) Measurement units to use for distance, time, and mass

(a) distance will use AU. 1 AU is the average distance from Earth to the sun (about 149,597,871 km)
(b) time will use a sidereal year (time it takes for one revolution around the sun, from periapsis to

periapsis (aka perihelion, where Earth is closest to)). On a side note, the sidereal year is about 20
minutes longer than the tropical year we use (solstice to solstice)

(c) mass is great! we conveniently use the mass of Earth as 1 unit
(3) Think of the vectors needed; 2 (large) vectors x and y, with successive values calculated by a for loop
(4) Plot it

4

Outline of script
(1) set values for initial location, velocity, and direction of Earth

(a) the major (long) axis of the elliptical orbit to lie on the x-axis
(b) the periapsis is at a point slightly less than 1.0 on the x-axis and y is 0; this will be initial position

of Earth
(c) Earth will be crossing the x-axis vertically at the initial instant in the direction increasing for y

(initial angle will be φ with value set at π/2)
(2) Set total duration of time for which the trajectory is to be calculated and the total number of small

time intervals per sidereal year to use; total time is 1 sidereal year (other planets will need longer time
duration) and small time intervals per sidereal year will be 10,000 (larger number will result in more
accurate trajectory)

Still working on To-do list
(3) Set values for constants
(4) Rescale physical constants and computationally easy units
(a) G is measured in meters3 kilograms−1 seconds−2

(b) Distance is 1 AU
(c) mass is 1 unit
(d) time is sidereal year
(e) convert G to new units with new expression Gnew = G(meters per AU)−3(kilograms per earth

mass)(seconds per sidereal year)2

(5) Calculate needed initial quantities: tot.inc is different from the number of small intervals (n.int) in 1
sidereal year; creation of empty vectors to dump calculations into from the loop
(6) Initialize new vectors with initial values; the product GM appears in the velocity change calculations so
it will be factored out and multiplied outside the loop

Almost there. . . almost there. . .
(7) The loop: i will go from 1:tot.inc and need to calculate:

(a) change in x
(b) change in y
(c) change in vx

(d) change in vy

(e) calculate and store xi+1
(f) calculate and store yi+1
(g) calculate and store vxi+1

(h) calculate and store vyi+1

(i) calculate and store ti+1
(8) Plot y vs. x positions with plot()

Trajectory script

x0=0.983291 # Periapsis distance in astronomical units
y0=0 # Start on x-axis, at periapsis
phi=pi/2 # Initial direction angle of earth's orbit
v0=30.3 # Earth's initial velocity at periapsis, km/s

n.int=10000 # Number time increments per Earth yr
t.end=1 # Number of years duration of trajectory

G=6.67428e-11 # Gravitational constant, m^3/(kg*s^2)
m=6.0e24 # Mass of earth, kg

5

M=m*3.33e5 # Mass of sun
km.AU=149.6e6 # One astronomical unit, km
sec.yr=31558149.540 # Seconds in a sidereal year

Trajectory script

me=m/m # Mass of earth expressed in earth units
Me=M/m # Sun's mass in earth units
G=G*m*sec.yr^2/((km.AU^3)*(1000^3)) # New units of G=AU^2/(me*yr^2)
v0=v0*sec.yr/km.AU # New units of v are AU/yr

v.x0=v0*cos(phi) # Earth's velocity, x-component, at periapsis
v.y0=v0*sin(phi) # Earth's velocity, y-component, at periapsis
dt=1/n.int # Duration of one small time interval (delta t)
tot.int=round(t.end*n.int); # Total number of small intervals (integer)

x=numeric(tot.int+1) # zero vector of ninc+1 for initial condition
y=x # Allocate y the same as x
v.x=x # Allocate v.x the same as x
v.y=x # Allocate v.y the same as x
t=x # Allocate t the same as x

Trajectory script

x[1]=x0 # Initial x-position
y[1]=y0 # Initial y-position
v.x[1]=v.x0 # Initial x-direction velocity
v.y[1]=v.y0 # Initial y-direction velocity
t[1]=0 # Initial t
c=G*Me # Pre-calculate a constant that appears repeatedly

for (i in 1:tot.int) {
dx=v.x[i]*dt # Change in x
dy=v.y[i]*dt # Change in y
dv.x=-c*x[i]/(x[i]^2+y[i]^2)^(3/2)*dt # Change in vx
dv.y=-c*y[i]/(x[i]^2+y[i]^2)^(3/2)*dt # Change in vy
x[i+1]=x[i]+dx # New value of x
y[i+1]=y[i]+dy # New value of y
v.x[i+1]=v.x[i]+dv.x # New value of vx
v.y[i+1]=v.y[i]+dv.y # New value of vy
t[i+1]=t[i]+dt # New value of t

}

Trajectory plot

par(pin=c(4,4)) # Equal screen size in x and y directions
plot(x,y,type="l",xlim=c(-1.1,1.1),ylim=c(-1.1,1.1)) # Line plot of y vs x.

6

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Distances to stars near the solar system
Accurately measuring distances to stars near our solar system use a method of triangulation called parallax.
The angle to the star is measured when Earth is on one side of its orbit and then measure the angle gain six
months later when Earth is on the opposite side. The amount by which the angle has changed by 2θ (half
the amount of change in θ is called the parallax), we can construct a right triangle, shown in next slide

Parallax

θ
Sun

Earth

star

7

Parallax
Using 1 AU as the (average) distance from Earth to the sun, the equation for distance from the sun to the
star is distance = 1/ tan θ. The angle represented by θ in the previous slide for Proxima Centauri (the closest
star to the sun) is 3.276× 10−6 radians. The distance in light years (LYs) from the fact that 1 LY is about
63279 AU (light travels from the sun to Earth in just over 8 minutes)

Distance to Proxima Centauri

theta=3.276e-06
d.au=1/tan(theta); d.au

[1] 305250.3
d.ly=d.au/63270; d.ly

[1] 4.824566

Light takes almost five years to get from Proxima Centauri to Earth

Projectile motion
Let x be the horizontal distance a projectile travels, y is the vertical distance the projectile can reach. If an
object is thrown at an angle of θ radians at an initial velocity v0 distance per time (use meters per second),
the object’s initial velocity in the x direction is v0 cos θ and the initial velocity in the y direction is v0 sin θ.

Equation time!
If the object is thrown while on a level surface, the horizontal distance x traveled by the object after t seconds
is described (discounting air resistance) by

x = t(v0 cos θ)

The height of the object above the ground after t seconds, assuming it was initially released at a height of y0
meters is

y = y0 + t(v0 sin θ)− gt2

2

g: gravitational constant (g ≈ 9.81m/s2)
Note that x is a linear function of t and the equation for y a quadratic function of t

More projectile
The object hits the ground when y = 0. The time tmax at which this happens is solved by the quadratic equation

tmax = −b−
√
b−4ac

2a
(the + would be the minimum because this quadratic function opens down)
a = −g/2, b = v0 sin θ, and c = y0. The farthest distance traveled before hitting the ground is xmax =
tmax(v0 cos θ)

Projectile script

8

mph=75 # Initial velocity, mph
angle=45 # Initial angle, degrees
height=5 # Initial height, ft

Convert units to meters and seconds
v0=mph*1609.344/(60*60) # Convert velocity to m/s
theta=2*pi*angle/360 # Convert angle to radians
y0=height/3.2808399 # Convert height to m
g=9.80665 # Gravitational acceleration constant

a=-g/2
b=v0*sin(theta)
c=y0
t.max=(-b-sqrt(b^2-4*a*c))/(2*a) # flight max time
x.max=v0*cos(theta)*t.max # max distance

Projectile script

t=t.max*(0:50)/50 # Range of t values between 0 and t.max.
x=v0*cos(theta)*t
y=y0+v0*sin(theta)*t-g*t^2/2
plot(x,y,xlab='distance in meters',ylab='height in meters')

0 20 40 60 80 100 120

0
5

10
15

20
25

30

distance in meters

he
ig

ht
 in

 m
et

er
s

t.max; x.max # Print t.max,x.max

[1] 4.898511

[1] 116.1333

9

Beam me back up (like, yesterday!)
Newton’s law of gravity can be used to derive a polar curve equation for the orbit of a planet around its star
or the orbit of a satellite around a planet.

r = r0
1 + ε

1 + ε cos θ

Eccentricity
The sun or body being orbited is assumed to be the origin. In the equation r0 is the distance from the point
of closest approach (periapsis) of the two bodies, and ε is the eccentricity (departure from circularity) of the
orbit. The periapsis and eccentricity both depend on the initial velocity and direction of the movement of the
orbiting body in ways that hurt my brain. For Earth’s orbit around the sun, r0 is about 0.98329 AU and ε is
about 0.016711.

Eccentricity

r0=0.98329; e=0.016711
theta=10*pi*(0:1000)/1000
r=r0*(1+e)/(1+e*cos(theta))
x=r*cos(theta); y=r*sin(theta)
plot(x,y,type="l",lty=1,xlim=c(-1.1,1.1),ylim=c(-1.1,1.1))

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

10

	To Infinity, and Beyond! How about the Sol System?
	Newton's law
	Setup
	Setup
	Velocities
	Review of Newton's laws
	Review of Newton's laws
	Review of Newton's laws
	Review of Newton's laws
	Application of gravity acceleration
	Yay trigonometry again!
	By the aid of Pythagoras
	substitutions in algebra
	Velocities
	Move the Earth…that's where I keep all my stuff
	Odd and ends before launch
	Outline of script
	Still working on To-do list
	Almost there…almost there…
	Trajectory script
	Trajectory script
	Trajectory script
	Trajectory plot
	Distances to stars near the solar system
	Parallax
	Parallax
	Distance to Proxima Centauri
	Projectile motion
	Equation time!
	More projectile
	Projectile script
	Projectile script
	Beam me back up (like, yesterday!)
	Eccentricity
	Eccentricity

