
Logic and Control
Statistics 427: R Programming

Module 7

2020

Logic and Control
R has many ways to use vectors, and comes with tools for extracting and manipulating (the good kind)
information in vectors.

Logical Comparison Operators and Logical Vectors
In previous modules there have been some examples of logical comparison operators and logical vectors
.

Logical Comparison Operators I
The logical part is in the answer to the comparison. The example shows the values of x that are less than or
equal to y. The answers in that are given as TRUE (yes that element of x is less than or equal to corresponding
element of y) or FALSE (no that element of x is not less than or equal to corresponding element of y).
x=c(3,0,-2,-5,7,2,-1)
y=c(2,4,-1,0,5,1,-4)
x<=y

[1] FALSE TRUE TRUE TRUE FALSE FALSE FALSE

Logical Comparison Operators II

Sign Definition
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
!= not equal to

Logical Comparison Operators III
Character vectors can be used as well with the comparisons. They will compare the number of characters.
a=c('ann','gretchen','maria','ruth','wendy')
b=c('bruce','ed','robert','seth','thomas')
a>=b

1

[1] FALSE TRUE FALSE FALSE TRUE

Boolean Operations I
Now we begin to combine logical comparisons in Boolean operations. The most commonly known Boolean
operations are “and”, “or”, and “not”.

Sign Definition
& and
| or
! not

Boolean Operations II

x=c(3,0,-2,-5,7,2,-1)
y=c(2,4,-1,0,5,1,-4)
(x-y>-2) & (x-y<2)

[1] TRUE FALSE TRUE FALSE FALSE TRUE FALSE
(x!=y)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Boolean Operations III
When you are using the index method with more than a one-dimensional vector, as in a data frame with at
least 2 vectors, then we have to account for the row number and column number of the value you want to
extract from the data frame. As in x[r,c] with r meaning row and c meaning column (reads as the elements
of row and column of vector x).

Leaving either the r or c blank (like x[,c] or x[r,]) will choose all of the rows or columns of the data frame.
Using a negative sign will choose all except the one(s) stated (like x[,-1] where all rows are chosen (it is
blank in the r argument) and all except the first column is chosen).

Boolean Operations IV

x=c(3,7,5,-2,0,-8)
y=c(2,7,-5,4,-1,6)
z=c('jan','feb','mar','apr','may','jun')
OR
zalt=month.name[1:6] # new function to extract first 6 months
monthly.numbers=data.frame(x,y,zalt)
monthly.numbers[4,1]

[1] -2

2

Boolean Operations V

monthly.numbers[4,2] # obs from 4th row and 2nd column

[1] 4
monthly.numbers[1:3,c(1,3)] # first 3 rows and first and third columns

x zalt
1 3 January
2 7 February
3 5 March
monthly.numbers[5,] # 5th row, all columns

x y zalt
5 0 -1 May

Boolean Operations VI

monthly.numbers[1:3,] # first 3 rows and first and all columns

x y zalt
1 3 2 January
2 7 7 February
3 5 -5 March
monthly.numbers[-4,-2] # all rows but the 4th and all columns but the 2nd

x zalt
1 3 January
2 7 February
3 5 March
5 0 May
6 -8 June

Conditional Statements
R will execute a statement or statements conditionally using if and if/else statements.

The if function will execute statement(s) based on meeting a condition. By itself it may not provide enough
flexibility if the condition could have another outcome.

if/else will execute one set of statement(s) based on meeting a condition, and other set(s) of statement(s)
if the condition is not met. There can be several else statements within the if function.

if

General form of if(cond) expr
cond: the condition to be met
expr: executable statement(s)

if(cond){
executable statement 1
executable statement 2

3

...
}

if/else

General form of if(cond) expr else altexpr
cond: the condition to be met
expr: executable statement(s) if condition is met
altexpr: executable statement(s) if condition is not met or another condition is met

if(cond){
executable statement 1a
executable statement 1b
...
} else {
executable statement 2a
executable statement 2b
...
}

if example
This will only give feedback if the condition can be met and will produce output.
x=3; rm(y); rm(z) # removing because they were use earlier
if (x<=2){

y=5
z=5

}

y; z will give an error since they did not meet the condition

if/else example

rm(x) # removing because was stored as something else earlier
x=3
if (x<=2){

y=5
z=5

} else {
y=6
z=6

}
y; z

[1] 6

[1] 6

4

Computer Dice I
Simulation to illustrate the if statement. The simulation will generate a vector of desired length with just 0s
and 1s in it (0=failure, 1=success), each element being the outcome of a random event. Many things could
be simulated like the atom of a radioisotope either decays in a unit of time or is does not decay in a unit of
time, a baseball player either gets a hit in a defined at-bat (at-bat excludes walks, hit by the pitcher, and
sacrifices) or does not get a hit during the at-bat, and an adult bird either survives during the coming year or
it does not survive the coming year.

Computer Dice II
For each experiment (atom isotope decaying or not, hitting during at-bat or not, bird survives or dies) we
“roll” the dice to get an outcome of either 0 or 1. If there is a success (1) we can assign it probability p and if
it is a failure (0) we can assign it a probability of 1 − p.

P (1) = p and P (0) = 1 − p

Computer Dice III
We will use the uniform random number generator as our “dice”. The generator will produce a randomly
picked number between 0 and 1. We will draw a uniform random number and compare it to p. If the value of
the uniform random number is less than or equal to p, we will say that a 1 occurred on the current repetition
otherwise we will say that a 0 has occurred. With the use of the word if in the previous sentence, that tells
us that there are two outcomes (conditions) that could be met.

We will use runif() function to return a vector of randomly generated values from a uniform distribution,
set an if/else to sort out the values in relation to p.

[runif() will produce different values every time you run it]

Computer Dice IV
We will create a function (it will be our generator) with runif() and if/else
gen=function(n,p){

u=runif(n)
x=numeric(n)

for (i in 1:n){
if(u[i]<=p){

x[i]=1
} else {

x[i]=0
}

}
return(x)

}
gen(30,.25)

[1] 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Computer Dice V
Each time you do this the values may vary a bit since you are taking random samples.

5

An average major league baseball (MLB) player usually has a batting average around .260, meaning that
during any given at-bat, the player has a probability of 0.26 (26% chance) of getting a hit. The issue is that
in any short sequence of at-bats, the player could have a great streak or a bad one. The at-bats number is
dependent on the sample size and short sequences can really hurt or help the player, as management tends to
make decisions based on short-run outcomes, rather than long-run outcomes, which probabilities are supposed
to be based upon.

There IS Crying In Baseball
Using gen fxn and loop for MLB batting average
n=30; p=.26 # avg at-bats in a set and bat avg
n.sets=100 # number of at-bats to sim
bat.avg=numeric(n.sets) # will contain new values

for (i in 1:n.sets){
bat.avg[i]=sum(gen(n,p))/n # number of hits in n at-bats divided by n

}
bat.avg

[1] 0.3666667 0.2000000 0.2000000 0.2000000 0.1666667 0.2333333 0.2000000
[8] 0.1333333 0.1666667 0.1666667 0.4666667 0.2333333 0.3000000 0.1333333

[15] 0.2000000 0.3666667 0.3000000 0.3333333 0.2666667 0.2666667 0.2000000
[22] 0.2333333 0.3000000 0.4000000 0.2333333 0.2333333 0.2000000 0.2666667
[29] 0.2333333 0.3666667 0.4000000 0.1666667 0.2000000 0.1666667 0.3333333
[36] 0.1333333 0.2333333 0.3000000 0.2333333 0.1666667 0.2000000 0.1666667
[43] 0.4000000 0.2333333 0.2333333 0.2333333 0.3000000 0.3666667 0.2333333
[50] 0.2666667 0.2333333 0.2333333 0.1666667 0.3000000 0.2666667 0.3333333
[57] 0.3333333 0.2333333 0.1000000 0.2000000 0.3000000 0.1666667 0.2666667
[64] 0.3000000 0.1666667 0.5000000 0.2333333 0.1666667 0.5000000 0.2666667
[71] 0.1333333 0.1000000 0.2666667 0.2666667 0.2000000 0.4333333 0.2666667
[78] 0.5000000 0.3000000 0.2666667 0.2666667 0.2666667 0.3000000 0.1666667
[85] 0.3333333 0.3666667 0.2000000 0.3666667 0.2000000 0.2333333 0.2333333
[92] 0.2666667 0.2666667 0.2000000 0.3333333 0.2333333 0.2333333 0.1666667
[99] 0.1666667 0.2666667

There IS Crying In Baseball histogram

hist(bat.avg)

6

Histogram of bat.avg

bat.avg

F
re

qu
en

cy

0.1 0.2 0.3 0.4 0.5

0
5

10
15

20
25

There IS Crying In Baseball stemplot

stem(bat.avg) # for the heck of it

The decimal point is 1 digit(s) to the left of the |

1 | 003333
1 | 77777777777777
2 | 0000000000000033333333333333333333
2 | 7777777777777777
3 | 0000000000333333
3 | 777777
4 | 0003
4 | 7
5 | 000

7

	Logic and Control
	Logical Comparison Operators and Logical Vectors
	Logical Comparison Operators I
	Logical Comparison Operators II
	Logical Comparison Operators III
	Boolean Operations I
	Boolean Operations II
	Boolean Operations III
	Boolean Operations IV
	Boolean Operations V
	Boolean Operations VI
	Conditional Statements
	if
	if/else
	if example
	if/else example
	Computer Dice I
	Computer Dice II
	Computer Dice III
	Computer Dice IV
	Computer Dice V
	There IS Crying In Baseball
	There IS Crying In Baseball histogram
	There IS Crying In Baseball stemplot

